39,246 research outputs found

    Exotic trees

    Full text link
    We discuss the scaling properties of free branched polymers. The scaling behaviour of the model is classified by the Hausdorff dimensions for the internal geometry: d_L and d_H, and for the external one: D_L and D_H. The dimensions d_H and D_H characterize the behaviour for long distances while d_L and D_L for short distances. We show that the internal Hausdorff dimension is d_L=2 for generic and scale-free trees, contrary to d_H which is known be equal two for generic trees and to vary between two and infinity for scale-free trees. We show that the external Hausdorff dimension D_H is directly related to the internal one as D_H = \alpha d_H, where \alpha is the stability index of the embedding weights for the nearest-vertex interactions. The index is \alpha=2 for weights from the gaussian domain of attraction and 0<\alpha <2 for those from the L\'evy domain of attraction. If the dimension D of the target space is larger than D_H one finds D_L=D_H, or otherwise D_L=D. The latter result means that the fractal structure cannot develop in a target space which has too low dimension.Comment: 33 pages, 6 eps figure

    Decomposition of Trees and Paths via Correlation

    Full text link
    We study the problem of decomposing (clustering) a tree with respect to costs attributed to pairs of nodes, so as to minimize the sum of costs for those pairs of nodes that are in the same component (cluster). For the general case and for the special case of the tree being a star, we show that the problem is NP-hard. For the special case of the tree being a path, this problem is known to be polynomial time solvable. We characterize several classes of facets of the combinatorial polytope associated with a formulation of this clustering problem in terms of lifted multicuts. In particular, our results yield a complete totally dual integral (TDI) description of the lifted multicut polytope for paths, which establishes a connection to the combinatorial properties of alternative formulations such as set partitioning.Comment: v2 is a complete revisio

    Lossless and near-lossless source coding for multiple access networks

    Get PDF
    A multiple access source code (MASC) is a source code designed for the following network configuration: a pair of correlated information sequences {X-i}(i=1)(infinity), and {Y-i}(i=1)(infinity) is drawn independent and identically distributed (i.i.d.) according to joint probability mass function (p.m.f.) p(x, y); the encoder for each source operates without knowledge of the other source; the decoder jointly decodes the encoded bit streams from both sources. The work of Slepian and Wolf describes all rates achievable by MASCs of infinite coding dimension (n --> infinity) and asymptotically negligible error probabilities (P-e((n)) --> 0). In this paper, we consider the properties of optimal instantaneous MASCs with finite coding dimension (n 0) performance. The interest in near-lossless codes is inspired by the discontinuity in the limiting rate region at P-e((n)) = 0 and the resulting performance benefits achievable by using near-lossless MASCs as entropy codes within lossy MASCs. Our central results include generalizations of Huffman and arithmetic codes to the MASC framework for arbitrary p(x, y), n, and P-e((n)) and polynomial-time design algorithms that approximate these optimal solutions

    Recognizing Partial Cubes in Quadratic Time

    Full text link
    We show how to test whether a graph with n vertices and m edges is a partial cube, and if so how to find a distance-preserving embedding of the graph into a hypercube, in the near-optimal time bound O(n^2), improving previous O(nm)-time solutions.Comment: 25 pages, five figures. This version significantly expands previous versions, including a new report on an implementation of the algorithm and experiments with i

    Setting Parameters by Example

    Full text link
    We introduce a class of "inverse parametric optimization" problems, in which one is given both a parametric optimization problem and a desired optimal solution; the task is to determine parameter values that lead to the given solution. We describe algorithms for solving such problems for minimum spanning trees, shortest paths, and other "optimal subgraph" problems, and discuss applications in multicast routing, vehicle path planning, resource allocation, and board game programming.Comment: 13 pages, 3 figures. To be presented at 40th IEEE Symp. Foundations of Computer Science (FOCS '99

    Geometric combinatorial algebras: cyclohedron and simplex

    Full text link
    In this paper we report on results of our investigation into the algebraic structure supported by the combinatorial geometry of the cyclohedron. Our new graded algebra structures lie between two well known Hopf algebras: the Malvenuto-Reutenauer algebra of permutations and the Loday-Ronco algebra of binary trees. Connecting algebra maps arise from a new generalization of the Tonks projection from the permutohedron to the associahedron, which we discover via the viewpoint of the graph associahedra of Carr and Devadoss. At the same time that viewpoint allows exciting geometrical insights into the multiplicative structure of the algebras involved. Extending the Tonks projection also reveals a new graded algebra structure on the simplices. Finally this latter is extended to a new graded Hopf algebra (one-sided) with basis all the faces of the simplices.Comment: 23 figures, new expanded section about Hopf algebra of simplices, with journal correction
    corecore