4 research outputs found

    Models of vertical interconnection in the future internet networks

    Get PDF
    Interkonekcija, čiji primarni cilj je omogućavanje korisnicima jednog učesnika na tržištu telekomunikacija da komuniciraju sa korisnicima drugog učesnika, odnosno, obezbeđivanje pristupa servisima koje obezbeđuje drugi učesnik, javila se nakon liberalizacije tržišta telekomunikacija. Vertikalna interkonekcija predstavlja fizičko i logičko povezivanje učesnika na različitim nivoima mreže. U okruženju budućeg Interneta, sagledavanje tehničko-ekonomskih aspekata interkonekcije predstavlja pitanje od izuzetnog značaja. U opštem slučaju, učesnici u vertikalnoj interkonekciji u okruženju budućeg Interneta mogu biti provajderi sadržaja i aplikacija, provajderi Internet servisa, Content Delivery Network (CDN) provajderi i cloud provajderi. Pojava Cloud Computing-a uvela je značajne promene u Internet okruženju koje se pre svega odnose na mogućnost pristupa skalabilnim i deljivim, fizičkim ili virtuelnim resursima. Na taj način, stvara se elastična platforma koja obezbeđuje dinamičnu i jednostavnu skalabilnost, pojednostavljuje se obezbeđivanje infrastrukture i omogućava se unapređenje performansi. Razvoj servisa i aplikacija zahtevnih u pogledu propusnog opsega praćen širom implementacijom Cloud Computing-a utiče na kontinuiran rast Internet saobraćaja, što zahteva primenu tehnologija koje mogu zadovoljiti sve strože zahteve. Kao rešenje za transportni nivo mreže, razvijene su elastične optičke mreže koje mogu obezbediti dovoljne propusne opsege uz efikasno iskorišćenje spektra. Imajući u vidu promene koje prate razvoj okruženja budućeg Interneta, kao i značaj vertikalne interkonekcije, neophodno je razmotriti i jasno definisati tehničko-ekonomske relacije između učesnika u budućem Internetu, što je predmet istraživanja ove doktorske disertacije. U okviru disertacije predložen je model koji ima za cilj određivanje adekvatnog ugovora o interkonekciji između učesnika u vertikalnoj interkonekciji, i to provajdera sadržaja i aplikacija i provajdera Internet servisa u procesu obezbeđivanja sadržaja krajnjim korisnicima, uz mogućnost parcijalne migracije sadržaja na resurse cloud provajdera. Analiza obuhvata različite ugovore o interkonekciji i određuje adekvatan ugovor, u zavisnosti od ciljnih profita provajdera koji učestvuju u vertikalnoj interkonekciji i prihvatljive stope odbijenih zahteva za obezbeđivanje sadržaja krajnjim korisnicima. Data analiza je proširena istraživanjem adekvatnog mehanizma tarifiranja i alokacije resursa cloud provajdera. Predložen je nov, hibridni model pristupa resursima cloud provajdera koji obezbeđuje zadovoljavajuće rezultate u kontekstu minimizacije troškova i minimizacije stope odbijenih zahteva za pristup sadržajima...Interconnection, whose primary aim is enabling communication between end users of different undertakings, i.e. enabling access to the other undertaking's services, was introduced after the telecommunication market liberalization. Vertical interconnection represents the physical and logical linking of the undertakings on different network levels. Consideration of technical and economic aspects of the interconnection is a crucial issue in the future Internet environment. In general, undertakings in vertical interconnection in the future Internet environment include content and application providers, Internet service providers, Content Delivery Network (CDN) providers and Cloud providers. The development of Cloud Computing introduced significant changes in the Internet environment in terms of enabling access to scalable and shareable, physical or virtual resources. Therefore, the elastic platform for dynamic and simple scalability is enabled, the access to infrastructure is simplified and performances are improved. High bandwidth demanding services and applications, along with the wide adoption of Cloud Computing causes permanent growth of Internet traffic. This indicates that the introduction of new technologies, capable to satisfy high bandwidth requirements, is necessary. Elastic optical networks are proposed as a promising solution for transport networks. These networks provide enough bandwidth, along with high efficiency in spectrum utilization. Forasmuch changes in the future Internet environment and the importance of the vertical interconnection, it is mandatory to consider and properly define technical and economic relations between undertakings in the future Internet environment, which is the research subject of this doctoral dissertation. Within dissertation, a model for the determination of a proper interconnection agreement between undertakings in the vertical interconnection, content and application provider and an Internet service provider, in the content provisioning process with partial cloud migration is proposed. The analysis comprises different interconnection agreements and determines appropriate agreement, depending on the targeted providers' profits and satisfying requests' for content provisioning rejection rate. This analysis is extended to determine adequate pricing and allocation mechanism for cloud provider's resources. A new, hybrid model for enabling access to cloud resources is proposed. The model provides satisfying results in terms of the costs' minimization and the minimization of requests' rejection rate..

    An Activity Theory-based Architecture To Enhance Context-aware Collaboration In Software Development In The Cloud

    Get PDF
    This research study reviews collaborative software development and assesses the impact of cloud computing in this domain. This is with a view towards identifying challenges to effective context-aware collaboration, as well as opportunities, risks, and potential benefits that could come from a well-defined structured leverage of cloud capabilities. Findings from systematic review of literature indicate that adoption of cloud computing played a significant part in bringing about trends such as: movement of traditional applications and processes to the cloud; cloud development environments; increased distribution in teams and resources; increased diversity in requirements; changes in how software is developed, tested, deployed, accessed, and maintained. These trends have in turn introduced factors such as: massive scale; additional layers of complexity in abstraction levels, entity characteristics and entity relationships within the development process. This additional layer of complexity translates into increase in contexts i.e., information that can be used to characterize states of entities. This is in addition to existing traditional complexity i.e., measure of proportionality of activities and tasks within the process. Some notable efforts towards improving collaboration in software development in the cloud include: transitioning development environments, tools and teams to the cloud; provision of code repositories and version control functionality to support collaboration between developers; provision of platforms to enhance collaboration between developers and end-users in early stages of the process via registered project campaigns and targeted questionnaires; provision of platforms with integrated social networking tools. However, an essential missing piece for more effective context-aware collaboration in the process is, the need for ways of addressing resultant complexity from cloud adoption and capturing actionable contexts. Capturing and communicating contextual information can help improve awareness and understanding and facilitate role-based coordination of distributed team members including users, and not just developers. This would ensure all stakeholders are always on the same page even if not in same location, across all phases of development. The main aim of this research study is to apply a new architecture framework underpinned by the right theoretical foundations, capable of leveraging cloud capabilities, harnessing contexts and addressing complexity to enhance context-aware collaboration in cloud-based software development. To achieve this aim, knowledge gleaned from the systematic literature review and the gap-impact analysis was thematized and synthesized to provide optimal recommendations to serve as roadmap guide for the development and evaluation carried out, and subsequent knowledge contributions. Key dimensions were adapted, along with development of classifications for approaches to enhancing collaboration in software development in the cloud. The key dimensions created were for - assessing collaboration needs; definition of context data and levels; collecting, categorizing, analysing, and applying contextual information to tasks, activities, and stages within software development in the cloud. These dimensions and classifications are useful for identification of reliable ways of measuring collaboration and success factors, as well as managing complexity and ensuring synchronous regularity of process and understanding within the development process in the cloud. A formal process was proposed to aid selection of an appropriate theoretical basis and assembling of a theoretical framework and methodology to underpin the architecture for enhancing context-aware collaboration in cloud-based software development. This was necessary due to the current lack of a de-facto architecture method for cloud-based software development. An activity theory-based architecture has been designed and developed, along with a Proof-of-Concept (POC) implementation that leverages cloud capabilities, for evaluation of the architecture. This architecture presents a novel approach for enhancing collaboration in software development in the cloud due to its underlying activity theory-based tenets that considers ‘activity’ as the unit of analysis, and ideal for activity systems and ease of identification of congruencies and contradictions present or capable impacting related components of the activity system and its ecosystem. The conclusions for this research study, limitations and future research directions have been discussed at the end of this thesis work
    corecore