140 research outputs found

    P2P vs. IP multicast: comparing approaches to IPTV streaming based on TV channel popularity

    Get PDF
    Already a popular application in the Internet, IPTV is becoming, among the service providers, a preferred alternative to conventional broadcasting technologies. Since many of the existing deployments have been done within the safe harbor of telco-owned networks, IP multicast has been the desired streaming solution. However, previous studies showed that the popularity of the TV channels follows the Pareto principle, with the bulk of TV channels being watched only by a small fraction of viewers. Recognizing the potential scalability issues, we believe that multicast streaming approach may not be desirable for unpopular TV channels, especially when there are many such channels in the provider's service package. For this reason, the peer-to-peer content distribution paradigm is seen as an alternative, in particular for non-popular content. In order to analyse its viability, in this paper we perform a comparative analysis between IP multicast and a peer-to-peer overlay using unicast connections as streaming approaches, in the context of channels with different degrees of popularity. The analysis targets the bandwidth utilization, video quality and scalability issues, and our findings show that while multicast is always more efficient, peer-to-peer has a comparable performance for unpopular channels with a low number of viewers.This article has been partially supported by the Spanish Ministry of Science and Innovation through the CONPARTE project (TEC2007-67966-C03-03/TCM), and by the Madrid Community through the MEDIANET project (S2009- TIC1468)Publicad

    P2P assisted streaming for low popularity VoD contents

    Get PDF
    The Video on Demand (VoD) service is becoming a dominant service in the telecommunication market due to the great convenience regarding the choice of content items and their independent viewing time. However, due to its high traffic demand nature, the VoD streaming systems are faced with the problem of huge amounts of traffic generated in the core of the network, especially for serving the requests for content items that are not in the top popularity range. Therefore, we propose a peer assisted VoD model that takes advantage of the clients unused uplink and storage capacity to serve requests for less popular items with the objective to keep the traffic on the periphery of the network, reduce the transport cost in the core of the network and make the system more scalable

    CliqueStream: an efficient and fault-resilient live streaming network on a clustered peer-to-peer overlay

    Full text link
    Several overlay-based live multimedia streaming platforms have been proposed in the recent peer-to-peer streaming literature. In most of the cases, the overlay neighbors are chosen randomly for robustness of the overlay. However, this causes nodes that are distant in terms of proximity in the underlying physical network to become neighbors, and thus data travels unnecessary distances before reaching the destination. For efficiency of bulk data transmission like multimedia streaming, the overlay neighborhood should resemble the proximity in the underlying network. In this paper, we exploit the proximity and redundancy properties of a recently proposed clique-based clustered overlay network, named eQuus, to build efficient as well as robust overlays for multimedia stream dissemination. To combine the efficiency of content pushing over tree structured overlays and the robustness of data-driven mesh overlays, higher capacity stable nodes are organized in tree structure to carry the long haul traffic and less stable nodes with intermittent presence are organized in localized meshes. The overlay construction and fault-recovery procedures are explained in details. Simulation study demonstrates the good locality properties of the platform. The outage time and control overhead induced by the failure recovery mechanism are minimal as demonstrated by the analysis.Comment: 10 page

    Architectures and technologies for quality of service provisioning in next generation networks

    Get PDF
    A NGN is a telecommunication network that differs from classical dedicated networks because of its capability to provide voice, video, data and cellular services on the same infrastructure (Quadruple-Play). The ITU-T standardization body has defined the NGN architecture in three different and well-defined strata: the transport stratum which takes care of maintaining end-to-end connectivity, the service stratum that is responsible for enabling the creation and the delivery of services, and finally the application stratum where applications can be created and executed. The most important separation in this architecture is relative to transport and service stratum. The aim is to enable the flexibility to add, maintain and remove services without any impact on the transport layer; to enable the flexibility to add, maintain and remove transport technologies without any impact on the access to service, application, content and information; and finally the efficient cohesistence of multiple terminals, access technologies and core transport technologies. The Service Oriented Architecture (SOA) is a paradigm often used in systems deployment and integration for organizing and utilizing distributed capabilities under the control of different ownership domains. In this thesis, the SOA technologies in network architetures are surveyed following the NGN functional architecture as defined by the ITU-T. Within each stratum, the main logical functions that have been the subject of investigation according to a service-oriented approach have been highlighted. Moreover, a new definition of the NGN transport stratum functionalities according to the SOA paradigm is proposed; an implementation of the relevant services interfaces to analyze this approach with experimental results shows some insight on the potentialities of the proposed strategy. Within NGN architectures research topic, especially in IP-based network architectures, Traffic Engineering (TE) is referred to as a set of policies and algorithms aimed at balancing network traffic load so as to improve network resource utilization and guarantee the service specific end-to-end QoS. DS-TE technology extends TE functionalities to a per-class basis implementation by introducing a higher level of traffic classification which associates to each class type (CT) a constraint on bandwidth utilization. These constraints are set by defining and configuring a bandwidth constraint (BC) model whih drives resource utilization aiming to higher load balancing, higher QoS performance and lower call blocking rate. Default TE implementations relies on a centralized approach to bandwidth and routing management, that require external management entities which periodically collect network status information and provide management actions. However, due to increasing network complexity, it is desiderable that nodes automatically discover their environment, self-configure and update to adapt to changes. In this thesis the bandwidth management problem is approached adopting an autonomic and distributed approach. Each node has a self-management module, which monitors the unreserved bandwidth in adjacent nodes and adjusts the local bandwidth constraints so as to reduce the differences in the unreserved bandwidth of neighbor nodes. With this distributed and autonomic algorithm, BC are dinamically modified to drive routing decision toward the traffic balancing respecting the QoS constraints for each class-type traffic requests. Finally, Video on Demand (VoD) is a service that provides a video whenever the customer requests it. Realizing a VoD system by means of the Internet network requires architectures tailored to video features such as guaranteed bandwidths and constrained transmission delays: these are hard to be provided in the traditional Internet architecture that is not designed to provide an adequate quality of service (QoS) and quality of experience (QoE) to the final user. Typical VoD solutions can be grouped in four categories: centralized, proxy-based, Content Delivery Network(CDN) and Hybrid architectures. Hybrid architectures combine the employment of a centralized server with that of a Peer-to-peer (P2P) network. This approach can effectively reduce the server load and avoid network congestions close to the server site because the peers support the delivery of the video to other peers using a cache-and-relay strategy making use of their upload bandwidth. Anyway, in a peer-to-peer network each peer is free to join and leave the network without notice, bringing to the phenomena of peer churns. These dynamics are dangerous for VoD architectures, affecting the integrity and retainability of the service. In this thesis, a study aimed to evaluate the impact of the peer churn on the system performance is proposed. Starting from important relationships between system parameters such as playback buffer length, peer request rate, peer average lifetime and server upload rate, four different analytic models are proposed

    Architectures and technologies for quality of service provisioning in next generation networks

    Get PDF
    A NGN is a telecommunication network that differs from classical dedicated networks because of its capability to provide voice, video, data and cellular services on the same infrastructure (Quadruple-Play). The ITU-T standardization body has defined the NGN architecture in three different and well-defined strata: the transport stratum which takes care of maintaining end-to-end connectivity, the service stratum that is responsible for enabling the creation and the delivery of services, and finally the application stratum where applications can be created and executed. The most important separation in this architecture is relative to transport and service stratum. The aim is to enable the flexibility to add, maintain and remove services without any impact on the transport layer; to enable the flexibility to add, maintain and remove transport technologies without any impact on the access to service, application, content and information; and finally the efficient cohesistence of multiple terminals, access technologies and core transport technologies. The Service Oriented Architecture (SOA) is a paradigm often used in systems deployment and integration for organizing and utilizing distributed capabilities under the control of different ownership domains. In this thesis, the SOA technologies in network architetures are surveyed following the NGN functional architecture as defined by the ITU-T. Within each stratum, the main logical functions that have been the subject of investigation according to a service-oriented approach have been highlighted. Moreover, a new definition of the NGN transport stratum functionalities according to the SOA paradigm is proposed; an implementation of the relevant services interfaces to analyze this approach with experimental results shows some insight on the potentialities of the proposed strategy. Within NGN architectures research topic, especially in IP-based network architectures, Traffic Engineering (TE) is referred to as a set of policies and algorithms aimed at balancing network traffic load so as to improve network resource utilization and guarantee the service specific end-to-end QoS. DS-TE technology extends TE functionalities to a per-class basis implementation by introducing a higher level of traffic classification which associates to each class type (CT) a constraint on bandwidth utilization. These constraints are set by defining and configuring a bandwidth constraint (BC) model whih drives resource utilization aiming to higher load balancing, higher QoS performance and lower call blocking rate. Default TE implementations relies on a centralized approach to bandwidth and routing management, that require external management entities which periodically collect network status information and provide management actions. However, due to increasing network complexity, it is desiderable that nodes automatically discover their environment, self-configure and update to adapt to changes. In this thesis the bandwidth management problem is approached adopting an autonomic and distributed approach. Each node has a self-management module, which monitors the unreserved bandwidth in adjacent nodes and adjusts the local bandwidth constraints so as to reduce the differences in the unreserved bandwidth of neighbor nodes. With this distributed and autonomic algorithm, BC are dinamically modified to drive routing decision toward the traffic balancing respecting the QoS constraints for each class-type traffic requests. Finally, Video on Demand (VoD) is a service that provides a video whenever the customer requests it. Realizing a VoD system by means of the Internet network requires architectures tailored to video features such as guaranteed bandwidths and constrained transmission delays: these are hard to be provided in the traditional Internet architecture that is not designed to provide an adequate quality of service (QoS) and quality of experience (QoE) to the final user. Typical VoD solutions can be grouped in four categories: centralized, proxy-based, Content Delivery Network(CDN) and Hybrid architectures. Hybrid architectures combine the employment of a centralized server with that of a Peer-to-peer (P2P) network. This approach can effectively reduce the server load and avoid network congestions close to the server site because the peers support the delivery of the video to other peers using a cache-and-relay strategy making use of their upload bandwidth. Anyway, in a peer-to-peer network each peer is free to join and leave the network without notice, bringing to the phenomena of peer churns. These dynamics are dangerous for VoD architectures, affecting the integrity and retainability of the service. In this thesis, a study aimed to evaluate the impact of the peer churn on the system performance is proposed. Starting from important relationships between system parameters such as playback buffer length, peer request rate, peer average lifetime and server upload rate, four different analytic models are proposed

    Les opérateurs sauront-ils survivre dans un monde en constante évolution? Considérations techniques conduisant à des scénarios de rupture

    Get PDF
    Le secteur des télécommunications passe par une phase délicate en raison de profondes mutations technologiques, principalement motivées par le développement de l'Internet. Elles ont un impact majeur sur l'industrie des télécommunications dans son ensemble et, par conséquent, sur les futurs déploiements des nouveaux réseaux, plateformes et services. L'évolution de l'Internet a un impact particulièrement fort sur les opérateurs des télécommunications (Telcos). En fait, l'industrie des télécommunications est à la veille de changements majeurs en raison de nombreux facteurs, comme par exemple la banalisation progressive de la connectivité, la domination dans le domaine des services de sociétés du web (Webcos), l'importance croissante de solutions à base de logiciels et la flexibilité qu'elles introduisent (par rapport au système statique des opérateurs télécoms). Cette thèse élabore, propose et compare les scénarios possibles basés sur des solutions et des approches qui sont technologiquement viables. Les scénarios identifiés couvrent un large éventail de possibilités: 1) Telco traditionnel; 2) Telco transporteur de Bits; 3) Telco facilitateur de Plateforme; 4) Telco fournisseur de services; 5) Disparition des Telco. Pour chaque scénario, une plateforme viable (selon le point de vue des opérateurs télécoms) est décrite avec ses avantages potentiels et le portefeuille de services qui pourraient être fournisThe telecommunications industry is going through a difficult phase because of profound technological changes, mainly originated by the development of the Internet. They have a major impact on the telecommunications industry as a whole and, consequently, the future deployment of new networks, platforms and services. The evolution of the Internet has a particularly strong impact on telecommunications operators (Telcos). In fact, the telecommunications industry is on the verge of major changes due to many factors, such as the gradual commoditization of connectivity, the dominance of web services companies (Webcos), the growing importance of software based solutions that introduce flexibility (compared to static system of telecom operators). This thesis develops, proposes and compares plausible future scenarios based on future solutions and approaches that will be technologically feasible and viable. Identified scenarios cover a wide range of possibilities: 1) Traditional Telco; 2) Telco as Bit Carrier; 3) Telco as Platform Provider; 4) Telco as Service Provider; 5) Telco Disappearance. For each scenario, a viable platform (from the point of view of telecom operators) is described highlighting the enabled service portfolio and its potential benefitsEVRY-INT (912282302) / SudocSudocFranceF

    View-Upload Decoupling: A Redesign of Multi-Channel P2P Video Systems

    Get PDF
    Abstract—In current multi-channel live P2P video systems, there are several fundamental performance problems including exceedingly-large channel switching delays, long playback lags, and poor performance for less popular channels. These performance problems primarily stem from two intrinsic characteristics of multi-channel P2P video systems: channel churn and channelresource imbalance. In this paper, we propose a radically different cross-channel P2P streaming framework, called View-Upload Decoupling (VUD). VUD strictly decouples peer downloading from uploading, bringing stability to multichannel systems and enabling cross-channel resource sharing. We propose a set of peer assignment and bandwidth allocation algorithms to properly provision bandwidth among channels, and introduce substream swarming to reduce the bandwidth overhead. We evaluate the performance of VUD via extensive simulations as well with a PlanetLab implementation. Our simulation and PlanetLab results show that VUD is resilient to channel churn, and achieves lower switching delay and better streaming quality. In particular, the streaming quality of small channels is greatly improved. I
    • …
    corecore