33 research outputs found

    Syndeticity and independent substitutions

    Get PDF
    We associate in a canonical way a substitution to any abstract numeration system built on a regular language. In relationship with the growth order of the letters, we define the notion of two independent substitutions. Our main result is the following. If a sequence xx is generated by two independent substitutions, at least one being of exponential growth, then the factors of xx appearing infinitely often in xx appear with bounded gaps. As an application, we derive an analogue of Cobham's theorem for two independent substitutions (or abstract numeration systems) one with polynomial growth, the other being exponential

    Self-similar tiling systems, topological factors and stretching factors

    Full text link
    In this paper we prove that if two self-similar tiling systems, with respective stretching factors λ1\lambda_1 and λ2\lambda_2, have a common factor which is a non periodic tiling system, then λ1\lambda_1 and λ2\lambda_2 are multiplicatively dependent

    Numeration Systems: a Link between Number Theory and Formal Language Theory

    Full text link
    We survey facts mostly emerging from the seminal results of Alan Cobham obtained in the late sixties and early seventies. We do not attempt to be exhaustive but try instead to give some personal interpretations and some research directions. We discuss the notion of numeration systems, recognizable sets of integers and automatic sequences. We briefly sketch some results about transcendence related to the representation of real numbers. We conclude with some applications to combinatorial game theory and verification of infinite-state systems and present a list of open problems.Comment: 21 pages, 3 figures, invited talk DLT'201

    Cobham-Semenov theorem and \NN^d-subshifts

    Full text link
    We give a new proof of the Cobham's first theorem using ideas from symbolic dynamics and of the Cobham-Semenov theorem (in the primitive case) using ideas from tiling dynamics.Comment: 24 page

    On the Sets of Real Numbers Recognized by Finite Automata in Multiple Bases

    Full text link
    This article studies the expressive power of finite automata recognizing sets of real numbers encoded in positional notation. We consider Muller automata as well as the restricted class of weak deterministic automata, used as symbolic set representations in actual applications. In previous work, it has been established that the sets of numbers that are recognizable by weak deterministic automata in two bases that do not share the same set of prime factors are exactly those that are definable in the first order additive theory of real and integer numbers. This result extends Cobham's theorem, which characterizes the sets of integer numbers that are recognizable by finite automata in multiple bases. In this article, we first generalize this result to multiplicatively independent bases, which brings it closer to the original statement of Cobham's theorem. Then, we study the sets of reals recognizable by Muller automata in two bases. We show with a counterexample that, in this setting, Cobham's theorem does not generalize to multiplicatively independent bases. Finally, we prove that the sets of reals that are recognizable by Muller automata in two bases that do not share the same set of prime factors are exactly those definable in the first order additive theory of real and integer numbers. These sets are thus also recognizable by weak deterministic automata. This result leads to a precise characterization of the sets of real numbers that are recognizable in multiple bases, and provides a theoretical justification to the use of weak automata as symbolic representations of sets.Comment: 17 page

    A problem around Mahler functions

    Full text link
    Let KK be a field of characteristic zero and kk and ll be two multiplicatively independent positive integers. We prove the following result that was conjectured by Loxton and van der Poorten during the Eighties: a power series F(z)K[[z]]F(z)\in K[[z]] satisfies both a kk- and a ll-Mahler type functional equation if and only if it is a rational function.Comment: 52 page

    Deciding Properties of Automatic Sequences

    Get PDF
    In this thesis, we show that several natural questions about automatic sequences can be expressed as logical predicates and then decided mechanically. We extend known results in this area to broader classes of sequences (e.g., paperfolding words), introduce new operations that extend the space of possible queries, and show how to process the results. We begin with the fundamental concepts and problems related to automatic sequences, and the corresponding numeration systems. Building on that foundation, we discuss the general logical framework that formalizes the questions we can mechanically answer. We start with a first-order logical theory, and then extend it with additional predicates and operations. Then we explain a slightly different technique that works on a monadic second- order theory, but show that it is ultimately subsumed by an extension of the first-order theory. Next, we give two applications: critical exponent and paperfolding words. In the critical exponent example, we mechanically construct an automaton that describes a set of rational numbers related to a given automatic sequence. Then we give a polynomial-time algorithm to compute the supremum of this rational set, allowing us to compute the critical exponent and many similar quantities. In the paperfolding example, we extend our mechanical procedure to the paperfolding words, an uncountably infinite collection of infinite words. In the following chapter, we address abelian and additive problems on automatic sequences. We give an example of a natural predicate which is provably inexpressible in our first-order theory, and discuss alternate methods for solving abelian and additive problems on automatic sequences. We close with a chapter of open problems, drawn from the earlier chapters

    Numeration systems on a regular language: Arithmetic operations, Recognizability and Formal power series

    Get PDF
    Generalizations of numeration systems in which N is recognizable by a finite automaton are obtained by describing a lexicographically ordered infinite regular language L over a finite alphabet A. For these systems, we obtain a characterization of recognizable sets of integers in terms of rational formal series. We also show that, if the complexity of L is Theta (n^q) (resp. if L is the complement of a polynomial language), then multiplication by an integer k preserves recognizability only if k=t^{q+1} (resp. if k is not a power of the cardinality of A) for some integer t. Finally, we obtain sufficient conditions for the notions of recognizability and U-recognizability to be equivalent, where U is some positional numeration system related to a sequence of integers.Comment: 34 pages; corrected typos, two sections concerning exponential case and relation with positional systems adde

    Automatic Sequences and Zip-Specifications

    Full text link
    We consider infinite sequences of symbols, also known as streams, and the decidability question for equality of streams defined in a restricted format. This restricted format consists of prefixing a symbol at the head of a stream, of the stream function `zip', and recursion variables. Here `zip' interleaves the elements of two streams in alternating order, starting with the first stream. For example, the Thue-Morse sequence is obtained by the `zip-specification' {M = 0 : X, X = 1 : zip(X,Y), Y = 0 : zip(Y,X)}. Our analysis of such systems employs both term rewriting and coalgebraic techniques. We establish decidability for these zip-specifications, employing bisimilarity of observation graphs based on a suitably chosen cobasis. The importance of zip-specifications resides in their intimate connection with automatic sequences. We establish a new and simple characterization of automatic sequences. Thus we obtain for the binary zip that a stream is 2-automatic iff its observation graph using the cobasis (hd,even,odd) is finite. The generalization to zip-k specifications and their relation to k-automaticity is straightforward. In fact, zip-specifications can be perceived as a term rewriting syntax for automatic sequences. Our study of zip-specifications is placed in an even wider perspective by employing the observation graphs in a dynamic logic setting, leading to an alternative characterization of automatic sequences. We further obtain a natural extension of the class of automatic sequences, obtained by `zip-mix' specifications that use zips of different arities in one specification. We also show that equivalence is undecidable for a simple extension of the zip-mix format with projections like even and odd. However, it remains open whether zip-mix specifications have a decidable equivalence problem
    corecore