6,700 research outputs found

    Extremal \u3cem\u3eH\u3c/em\u3e-Colorings of Trees and 2-connected Graphs

    Get PDF
    For graphs G and H, an H-coloring of G is an adjacency preserving map from the vertices of G to the vertices of H. H-colorings generalize such notions as independent sets and proper colorings in graphs. There has been much recent research on the extremal question of finding the graph(s) among a fixed family that maximize or minimize the number of H-colorings. In this paper, we prove several results in this area. First, we find a class of graphs H with the property that for each H∈H, the n-vertex tree that minimizes the number of H -colorings is the path Pn. We then present a new proof of a theorem of Sidorenko, valid for large n, that for every H the star K1,n−1 is the n-vertex tree that maximizes the number of H-colorings. Our proof uses a stability technique which we also use to show that for any non-regular H (and certain regular H ) the complete bipartite graph K2,n−2 maximizes the number of H-colorings of n -vertex 2-connected graphs. Finally, we show that the cycle Cn has the most proper q-colorings among all n-vertex 2-connected graphs

    Sink-Stable Sets of Digraphs

    Full text link
    We introduce the notion of sink-stable sets of a digraph and prove a min-max formula for the maximum cardinality of the union of k sink-stable sets. The results imply a recent min-max theorem of Abeledo and Atkinson on the Clar number of bipartite plane graphs and a sharpening of Minty's coloring theorem. We also exhibit a link to min-max results of Bessy and Thomasse and of Sebo on cyclic stable sets

    On the Chromatic Thresholds of Hypergraphs

    Full text link
    Let F be a family of r-uniform hypergraphs. The chromatic threshold of F is the infimum of all non-negative reals c such that the subfamily of F comprising hypergraphs H with minimum degree at least c(∣V(H)∣r−1)c \binom{|V(H)|}{r-1} has bounded chromatic number. This parameter has a long history for graphs (r=2), and in this paper we begin its systematic study for hypergraphs. {\L}uczak and Thomass\'e recently proved that the chromatic threshold of the so-called near bipartite graphs is zero, and our main contribution is to generalize this result to r-uniform hypergraphs. For this class of hypergraphs, we also show that the exact Tur\'an number is achieved uniquely by the complete (r+1)-partite hypergraph with nearly equal part sizes. This is one of very few infinite families of nondegenerate hypergraphs whose Tur\'an number is determined exactly. In an attempt to generalize Thomassen's result that the chromatic threshold of triangle-free graphs is 1/3, we prove bounds for the chromatic threshold of the family of 3-uniform hypergraphs not containing {abc, abd, cde}, the so-called generalized triangle. In order to prove upper bounds we introduce the concept of fiber bundles, which can be thought of as a hypergraph analogue of directed graphs. This leads to the notion of fiber bundle dimension, a structural property of fiber bundles that is based on the idea of Vapnik-Chervonenkis dimension in hypergraphs. Our lower bounds follow from explicit constructions, many of which use a hypergraph analogue of the Kneser graph. Using methods from extremal set theory, we prove that these Kneser hypergraphs have unbounded chromatic number. This generalizes a result of Szemer\'edi for graphs and might be of independent interest. Many open problems remain.Comment: 37 pages, 4 figure

    Rate-distance tradeoff for codes above graph capacity

    Get PDF
    The capacity of a graph is defined as the rate of exponential growth of independent sets in the strong powers of the graph. In the strong power an edge connects two sequences if at each position their letters are equal or adjacent. We consider a variation of the problem where edges in the power graphs are removed between sequences which differ in more than a fraction δ\delta of coordinates. The proposed generalization can be interpreted as the problem of determining the highest rate of zero undetected-error communication over a link with adversarial noise, where only a fraction δ\delta of symbols can be perturbed and only some substitutions are allowed. We derive lower bounds on achievable rates by combining graph homomorphisms with a graph-theoretic generalization of the Gilbert-Varshamov bound. We then give an upper bound, based on Delsarte's linear programming approach, which combines Lov\'asz' theta function with the construction used by McEliece et al. for bounding the minimum distance of codes in Hamming spaces.Comment: 5 pages. Presented at 2016 IEEE International Symposium on Information Theor
    • …
    corecore