9,775 research outputs found

    On metric Ramsey-type phenomena

    Full text link
    The main question studied in this article may be viewed as a nonlinear analogue of Dvoretzky's theorem in Banach space theory or as part of Ramsey theory in combinatorics. Given a finite metric space on n points, we seek its subspace of largest cardinality which can be embedded with a given distortion in Hilbert space. We provide nearly tight upper and lower bounds on the cardinality of this subspace in terms of n and the desired distortion. Our main theorem states that for any epsilon>0, every n point metric space contains a subset of size at least n^{1-\epsilon} which is embeddable in Hilbert space with O(\frac{\log(1/\epsilon)}{\epsilon}) distortion. The bound on the distortion is tight up to the log(1/\epsilon) factor. We further include a comprehensive study of various other aspects of this problem.Comment: 67 pages, published versio

    On Metric Ramsey-type Dichotomies

    Full text link
    The classical Ramsey theorem, states that every graph contains either a large clique or a large independent set. Here we investigate similar dichotomic phenomena in the context of finite metric spaces. Namely, we prove statements of the form "Every finite metric space contains a large subspace that is nearly quilateral or far from being equilateral". We consider two distinct interpretations for being "far from equilateral". Proximity among metric spaces is quantified through the metric distortion D. We provide tight asymptotic answers for these problems. In particular, we show that a phase transition occurs at D=2.Comment: 14 pages, 0 figure

    On some low distortion metric Ramsey problems

    Full text link
    In this note, we consider the metric Ramsey problem for the normed spaces l_p. Namely, given some 1=1, and an integer n, we ask for the largest m such that every n-point metric space contains an m-point subspace which embeds into l_p with distortion at most alpha. In [arXiv:math.MG/0406353] it is shown that in the case of l_2, the dependence of mm on alpha undergoes a phase transition at alpha=2. Here we consider this problem for other l_p, and specifically the occurrence of a phase transition for p other than 2. It is shown that a phase transition does occur at alpha=2 for every p in the interval [1,2]. For p>2 we are unable to determine the answer, but estimates are provided for the possible location of such a phase transition. We also study the analogous problem for isometric embedding and show that for every 1<p<infinity there are arbitrarily large metric spaces, no four points of which embed isometrically in l_p.Comment: 14 pages, to be published in Discrete and Computational Geometr

    Limitations to Frechet's Metric Embedding Method

    Full text link
    Frechet's classical isometric embedding argument has evolved to become a major tool in the study of metric spaces. An important example of a Frechet embedding is Bourgain's embedding. The authors have recently shown that for every e>0 any n-point metric space contains a subset of size at least n^(1-e) which embeds into l_2 with distortion O(\log(2/e) /e). The embedding we used is non-Frechet, and the purpose of this note is to show that this is not coincidental. Specifically, for every e>0, we construct arbitrarily large n-point metric spaces, such that the distortion of any Frechet embedding into l_p on subsets of size at least n^{1/2 + e} is \Omega((\log n)^{1/p}).Comment: 10 pages, 1 figur

    Metric Cotype

    Get PDF
    We introduce the notion of metric cotype, a property of metric spaces related to a property of normed spaces, called Rademacher cotype. Apart from settling a long standing open problem in metric geometry, this property is used to prove the following dichotomy: A family of metric spaces F is either almost universal (i.e., contains any finite metric space with any distortion > 1), or there exists α > 0, and arbitrarily large n-point metrics whose distortion when embedded in any member of F is at least Ω((log n)^α). The same property is also used to prove strong non-embeddability theorems of L_q into L_p, when q > max{2,p}. Finally we use metric cotype to obtain a new type of isoperimetric inequality on the discrete torus
    corecore