8,105 research outputs found

    PARAMETER-LESS AND METAPHOR-LESS METAHEURISTIC ALGORITHM SUGGESTION FOR SOLVING COMBINATORIAL OPTIMIZATION PROBLEMS

    Get PDF
    Many optimization problems are complex, challenging and take a significant amount of computational effort to solve. These problems have gained the attention of researchers and they have developed lots of metaheuristic algorithms to use for solving these problems. Most of the developed metaheuristic algorithms are based on some metaphors. For this reason, these algorithms have algorithm-specific parameters to reflect the nature of the inspired metaphor. This violates the algorithm's simplicity and brings extra workload to execute the algorithm. However, the optimization problems can also be solved with simple, useful, metaphor-less and algorithm-specific parameter-less metaheuristic algorithms. So, it is the essential motivation behind this study. We present a novel metaheuristic algorithm called Discrete Rao Algorithm (DRA) by updating some components of the generic Rao algorithm to solve the combinatorial optimization problems. To evaluate the performance of the DRA, we perform experiments on Traveling Salesman Problem (TSP) which is the well-known combinatorial optimization problem. The experiments are performed on different sized benchmark problems in the literature. The computational results show that the developed algorithm has obtained high quality solutions in a reasonable computation time and it is competitive with other algorithms in the literature for solving the TSP

    Firefly Algorithm: Recent Advances and Applications

    Full text link
    Nature-inspired metaheuristic algorithms, especially those based on swarm intelligence, have attracted much attention in the last ten years. Firefly algorithm appeared in about five years ago, its literature has expanded dramatically with diverse applications. In this paper, we will briefly review the fundamentals of firefly algorithm together with a selection of recent publications. Then, we discuss the optimality associated with balancing exploration and exploitation, which is essential for all metaheuristic algorithms. By comparing with intermittent search strategy, we conclude that metaheuristics such as firefly algorithm are better than the optimal intermittent search strategy. We also analyse algorithms and their implications for higher-dimensional optimization problems.Comment: 15 page

    AED: An Anytime Evolutionary DCOP Algorithm

    Get PDF
    Evolutionary optimization is a generic population-based metaheuristic that can be adapted to solve a wide variety of optimization problems and has proven very effective for combinatorial optimization problems. However, the potential of this metaheuristic has not been utilized in Distributed Constraint Optimization Problems (DCOPs), a well-known class of combinatorial optimization problems prevalent in Multi-Agent Systems. In this paper, we present a novel population-based algorithm, Anytime Evolutionary DCOP (AED), that uses evolutionary optimization to solve DCOPs. In AED, the agents cooperatively construct an initial set of random solutions and gradually improve them through a new mechanism that considers an optimistic approximation of local benefits. Moreover, we present a new anytime update mechanism for AED that identifies the best among a distributed set of candidate solutions and notifies all the agents when a new best is found. In our theoretical analysis, we prove that AED is anytime. Finally, we present empirical results indicating AED outperforms the state-of-the-art DCOP algorithms in terms of solution quality.Comment: 9 pages, 6 figures, 2 tables. Appeared in the proceedings of the 19th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2020
    corecore