1,916 research outputs found

    Bounded colorings of multipartite graphs and hypergraphs

    Full text link
    Let cc be an edge-coloring of the complete nn-vertex graph KnK_n. The problem of finding properly colored and rainbow Hamilton cycles in cc was initiated in 1976 by Bollob\'as and Erd\H os and has been extensively studied since then. Recently it was extended to the hypergraph setting by Dudek, Frieze and Ruci\'nski. We generalize these results, giving sufficient local (resp. global) restrictions on the colorings which guarantee a properly colored (resp. rainbow) copy of a given hypergraph GG. We also study multipartite analogues of these questions. We give (up to a constant factor) optimal sufficient conditions for a coloring cc of the complete balanced mm-partite graph to contain a properly colored or rainbow copy of a given graph GG with maximum degree Δ\Delta. Our bounds exhibit a surprising transition in the rate of growth, showing that the problem is fundamentally different in the regimes Δm\Delta \gg m and Δm\Delta \ll m Our main tool is the framework of Lu and Sz\'ekely for the space of random bijections, which we extend to product spaces

    A Self-Linking Invariant of Virtual Knots

    Full text link
    In this paper we introduce a new invariant of virtual knots and links that is non-trivial for infinitely many virtuals, but is trivial on classical knots and links. The invariant is initially be expressed in terms of a relative of the bracket polynomial and then extracted from this polynomial in terms of its exponents, particularly for the case of knots. This analog of the bracket polynomial will be denoted {K} (with curly brackets) and called the binary bracket polynomial. The key to the combinatorics of the invariant is an interpretation of the state sum in terms of 2-colorings of the associated diagrams. For virtual knots, the new invariant, J(K), is a restriction of the writhe to the odd crossings of the diagram (A crossing is odd if it links an odd number of crossings in the Gauss code of the knot. The set of odd crossings is empty for a classical knot.) For K a virtual knot, J(K) non-zero implies that K is non-trivial, non-classical and inequivalent to its planar mirror image. The paper also condsiders generalizations of the two-fold coloring of the states of the binary bracket to cases of three and more colors. Relationships with graph coloring and the Four Color Theorem are discussed.Comment: 36 pages, 22 figures, LaTeX documen

    On DP-Coloring of Digraphs

    Get PDF
    DP-coloring is a relatively new coloring concept by Dvo\v{r}\'ak and Postle and was introduced as an extension of list-colorings of (undirected) graphs. It transforms the problem of finding a list-coloring of a given graph GG with a list-assignment LL to finding an independent transversal in an auxiliary graph with vertex set {(v,c)  vV(G),cL(v)}\{(v,c) ~|~ v \in V(G), c \in L(v)\}. In this paper, we extend the definition of DP-colorings to digraphs using the approach from Neumann-Lara where a coloring of a digraph is a coloring of the vertices such that the digraph does not contain any monochromatic directed cycle. Furthermore, we prove a Brooks' type theorem regarding the DP-chromatic number, which extends various results on the (list-)chromatic number of digraphs.Comment: 23 pages, 6 figure
    corecore