996 research outputs found

    Finite 33-connected homogeneous graphs

    Full text link
    A finite graph \G is said to be {\em (G,3)(G,3)-((connected)) homogeneous} if every isomorphism between any two isomorphic (connected) subgraphs of order at most 33 extends to an automorphism g∈Gg\in G of the graph, where GG is a group of automorphisms of the graph. In 1985, Cameron and Macpherson determined all finite (G,3)(G, 3)-homogeneous graphs. In this paper, we develop a method for characterising (G,3)(G,3)-connected homogeneous graphs. It is shown that for a finite (G,3)(G,3)-connected homogeneous graph \G=(V, E), either G_v^{\G(v)} is 22--transitive or G_v^{\G(v)} is of rank 33 and \G has girth 33, and that the class of finite (G,3)(G,3)-connected homogeneous graphs is closed under taking normal quotients. This leads us to study graphs where GG is quasiprimitive on VV. We determine the possible quasiprimitive types for GG in this case and give new constructions of examples for some possible types

    Enumerating planar locally finite Cayley graphs

    Full text link
    We characterize the set of planar locally finite Cayley graphs, and give a finite representation of these graphs by a special kind of finite state automata called labeling schemes. As a result, we are able to enumerate and describe all planar locally finite Cayley graphs of a given degree. This analysis allows us to solve the problem of decision of the locally finite planarity for a word-problem-decidable presentation. Keywords: vertex-transitive, Cayley graph, planar graph, tiling, labeling schemeComment: 19 pages, 6 PostScript figures, 12 embedded PsTricks figures. An additional file (~ 438ko.) containing the figures in appendix might be found at http://www.labri.fr/Perso/~renault/research/pages.ps.g

    The vertex-transitive TLF-planar graphs

    Full text link
    We consider the class of the topologically locally finite (in short TLF) planar vertex-transitive graphs, a class containing in particular all the one-ended planar Cayley graphs and the normal transitive tilings. We characterize these graphs with a finite local representation and a special kind of finite state automaton named labeling scheme. As a result, we are able to enumerate and describe all TLF-planar vertex-transitive graphs of any given degree. Also, we are able decide to whether any TLF-planar transitive graph is Cayley or not.Comment: Article : 23 pages, 15 figures Appendix : 13 pages, 72 figures Submitted to Discrete Mathematics The appendix is accessible at http://www.labri.fr/~renault/research/research.htm

    Abelian Carter subgroups in finite permutation groups

    Full text link
    We show that a finite permutation group containing a regular abelian self-normalizing subgroup is soluble.Comment: 6 page

    Graphs, permutations and topological groups

    Get PDF
    Various connections between the theory of permutation groups and the theory of topological groups are described. These connections are applied in permutation group theory and in the structure theory of topological groups. The first draft of these notes was written for lectures at the conference Totally disconnected groups, graphs and geometry in Blaubeuren, Germany, 2007.Comment: 39 pages (The statement of Krophollers conjecture (item 4.30) has been corrected

    Characterizing a vertex-transitive graph by a large ball

    Full text link
    It is well-known that a complete Riemannian manifold M which is locally isometric to a symmetric space is covered by a symmetric space. Here we prove that a discrete version of this property (called local to global rigidity) holds for a large class of vertex-transitive graphs, including Cayley graphs of torsion-free lattices in simple Lie groups, and Cayley graph of torsion-free virtually nilpotent groups. By contrast, we exhibit various examples of Cayley graphs of finitely presented groups (e.g. SL(4,Z)) which fail to have this property, answering a question of Benjamini, Ellis, and Georgakopoulos. Answering a question of Cornulier, we also construct a continuum of non pairwise isometric large-scale simply connected locally finite vertex-transitive graphs. This question was motivated by the fact that large-scale simply connected Cayley graphs are precisely Cayley graphs of finitely presented groups and therefore have countably many isometric classes.Comment: v1: 38 pages. With an Appendix by Jean-Claude Sikorav v2: 48 pages. Several improvements in the presentation. To appear in Journal of Topolog
    • …
    corecore