7 research outputs found

    Incorporating comorbidities into latent treatment pattern mining for clinical pathways

    Get PDF
    AbstractIn healthcare organizational settings, the design of a clinical pathway (CP) is challenging since patients following a particular pathway may have not only one single first-diagnosis but also several typical comorbidities, and thus it requires different disciplines involved to put together their partial knowledge about the overall pathway. Although many data mining techniques have been proposed to discover latent treatment information for CP analysis and reconstruction from a large volume of clinical data, they are specific to extract nontrivial information about the therapy and treatment of the first-diagnosis. The influence of comorbidities on adopting essential treatments is crucial for a pathway but has seldom been explored. This study proposes to extract latent treatment patterns that characterize essential treatments for both first-diagnosis and typical comorbidities from the execution data of a pathway. In particular, we propose a generative statistical model to extract underlying treatment patterns, unveil the latent associations between diagnosis labels (including both first-diagnosis and comorbidities) and treatments, and compute the contribution of comorbidities in these patterns. The proposed model extends latent Dirichlet allocation with an additional layer for diagnosis modeling. It first generates a set of latent treatment patterns from diagnosis labels, followed by sampling treatments from each pattern. We verify the effectiveness of the proposed model on a real clinical dataset containing 12,120 patient traces, which pertain to the unstable angina CP. Three treatment patterns are discovered from data, indicating latent correlations between comorbidities and treatments in the pathway. In addition, a possible medical application in terms of treatment recommendation is provided to illustrate the potential of the proposed model. Experimental results indicate that our approach can discover not only meaningful latent treatment patterns exhibiting comorbidity focus, but also implicit changes of treatments of first-diagnosis due to the incorporation of typical comorbidities potentially

    Disease diagnosis in smart healthcare: Innovation, technologies and applications

    Get PDF
    To promote sustainable development, the smart city implies a global vision that merges artificial intelligence, big data, decision making, information and communication technology (ICT), and the internet-of-things (IoT). The ageing issue is an aspect that researchers, companies and government should devote efforts in developing smart healthcare innovative technology and applications. In this paper, the topic of disease diagnosis in smart healthcare is reviewed. Typical emerging optimization algorithms and machine learning algorithms are summarized. Evolutionary optimization, stochastic optimization and combinatorial optimization are covered. Owning to the fact that there are plenty of applications in healthcare, four applications in the field of diseases diagnosis (which also list in the top 10 causes of global death in 2015), namely cardiovascular diseases, diabetes mellitus, Alzheimer’s disease and other forms of dementia, and tuberculosis, are considered. In addition, challenges in the deployment of disease diagnosis in healthcare have been discussed

    Process mining for healthcare: Characteristics and challenges

    Get PDF
    Process mining techniques can be used to analyse business processes using the data logged during their execution. These techniques are leveraged in a wide range of domains, including healthcare, where it focuses mainly on the analysis of diagnostic, treatment, and organisational processes. Despite the huge amount of data generated in hospitals by staff and machinery involved in healthcare processes, there is no evidence of a systematic uptake of process mining beyond targeted case studies in a research context. When developing and using process mining in healthcare, distinguishing characteristics of healthcare processes such as their variability and patient-centred focus require targeted attention. Against this background, the Process-Oriented Data Science in Healthcare Alliance has been established to propagate the research and application of techniques targeting the data-driven improvement of healthcare processes. This paper, an initiative of the alliance, presents the distinguishing characteristics of the healthcare domain that need to be considered to successfully use process mining, as well as open challenges that need to be addressed by the community in the future.This work is partially supported by ANID FONDECYT 1220202, Dirección de Investigación de la Vicerrectoría de Investigación de la Pontificia Universidad Católica de Chile - PUENTE [Grant No. 026/ 2021]; and Agencia Nacional de Investigación y Desarrollo [Grant Nos. ANID-PFCHA/Doctorado Nacional/2019–21190116, ANID-PFCHA/ Doctorado Nacional/2020–21201411]. With regard to the co-author Hilda Klasky, this manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-accessplan).Peer ReviewedArticle signat per 55 autors/es: Jorge Munoz-Gama (a)* , Niels Martin (b,c)* , Carlos Fernandez-Llatas (d,g)* , Owen A. Johnson (e)* , Marcos Sepúlveda (a)* , Emmanuel Helm (f)* , Victor Galvez-Yanjari (a)* , Eric Rojas (a) , Antonio Martinez-Millana (d) , Davide Aloini (k) , Ilaria Angela Amantea (l,q,r) , Robert Andrews (ab), Michael Arias (z) , Iris Beerepoot (o) , Elisabetta Benevento (k) , Andrea Burattin (ai), Daniel Capurro (j) , Josep Carmona (s) , Marco Comuzzi (w), Benjamin Dalmas (aj,ak), Rene de la Fuente (a) , Chiara Di Francescomarino (h) , Claudio Di Ciccio (i) , Roberto Gatta (ad,ae), Chiara Ghidini (h) , Fernanda Gonzalez-Lopez (a) , Gema Ibanez-Sanchez (d) , Hilda B. Klasky (p) , Angelina Prima Kurniati (al), Xixi Lu (o) , Felix Mannhardt (m), Ronny Mans (af), Mar Marcos (v) , Renata Medeiros de Carvalho (m), Marco Pegoraro (x) , Simon K. Poon (ag), Luise Pufahl (u) , Hajo A. Reijers (m,o) , Simon Remy (y) , Stefanie Rinderle-Ma (ah), Lucia Sacchi (t) , Fernando Seoane (g,am,an), Minseok Song (aa), Alessandro Stefanini (k) , Emilio Sulis (l) , Arthur H. M. ter Hofstede (ab), Pieter J. Toussaint (ac), Vicente Traver (d) , Zoe Valero-Ramon (d) , Inge van de Weerd (o) , Wil M.P. van der Aalst (x) , Rob Vanwersch (m), Mathias Weske (y) , Moe Thandar Wynn (ab), Francesca Zerbato (n) // (a) Pontificia Universidad Catolica de Chile, Chile; (b) Hasselt University, Belgium; (c) Research Foundation Flanders (FWO), Belgium; (d) Universitat Politècnica de València, Spain; (e) University of Leeds, United Kingdom; (f) University of Applied Sciences Upper Austria, Austria; (g) Karolinska Institutet, Sweden; (h) Fondazione Bruno Kessler, Italy; (i) Sapienza University of Rome, Italy; (j) University of Melbourne, Australia; (k) University of Pisa, Italy; (l) University of Turin, Italy; (m) Eindhoven University of Technology, The Netherlands; (n) University of St. Gallen, Switzerland; (o) Utrecht University, The Netherlands; (p) Oak Ridge National Laboratory, United States; (q) University of Bologna, Italy; (r) University of Luxembourg, Luxembourg; (s) Universitat Politècnica de Catalunya, Spain; (t) University of Pavia, Italy; (u) Technische Universitaet Berlin, Germany; (v) Universitat Jaume I, Spain; (w) Ulsan National Institute of Science and Technology (UNIST), Republic of Korea; (x) RWTH Aachen University, Germany; (y) University of Potsdam, Germany; (z) Universidad de Costa Rica, Costa Rica; (aa) Pohang University of Science and Technology, Republic of Korea; (ab) Queensland University of Technology, Australia; (ac) Norwegian University of Science and Technology, Norway; (ad) Universita degli Studi di Brescia, Italy; (ae) Lausanne University Hospital (CHUV), Switzerland; (af) Philips Research, the Netherlands; (ag) The University of Sydney, Australia; (ah) Technical University of Munich, Germany; (ai) Technical University of Denmark, Denmark; (aj) Mines Saint-Etienne, France; (ak) Université Clermont Auvergne, France; (al) Telkom University, Indonesia; (am) Karolinska University Hospital, Sweden; (an) University of Borås, SwedenPostprint (published version

    Process mining for healthcare: Characteristics and challenges

    Full text link
    [EN] Process mining techniques can be used to analyse business processes using the data logged during their execution. These techniques are leveraged in a wide range of domains, including healthcare, where it focuses mainly on the analysis of diagnostic, treatment, and organisational processes. Despite the huge amount of data generated in hospitals by staff and machinery involved in healthcare processes, there is no evidence of a systematic uptake of process mining beyond targeted case studies in a research context. When developing and using process mining in healthcare, distinguishing characteristics of healthcare processes such as their variability and patient-centred focus require targeted attention. Against this background, the Process-Oriented Data Science in Healthcare Alliance has been established to propagate the research and application of techniques targeting the data-driven improvement of healthcare processes. This paper, an initiative of the alliance, presents the distinguishing characteristics of the healthcare domain that need to be considered to successfully use process mining, as well as open challenges that need to be addressed by the community in the future.This work is partially supported by ANID FONDECYT 1220202, Direccion de Investigacion de la Vicerrectoria de Investigacion de la Pontificia Universidad Catolica de Chile-PUENTE [Grant No. 026/2021] ; and Agencia Nacional de Investigacion y Desarrollo [Grant Nos. ANID-PFCHA/Doctorado Nacional/2019-21190116, ANID-PFCHA/Doctorado Nacional/2020-21201411] . With regard to the co-author Hilda Klasky, this manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE) . The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan)Munoz Gama, J.; Martin, N.; Fernández Llatas, C.; Johnson, OA.; Sepúlveda, M.; Helm, E.; Galvez-Yanjari, V.... (2022). Process mining for healthcare: Characteristics and challenges. Journal of Biomedical Informatics. 127:1-15. https://doi.org/10.1016/j.jbi.2022.10399411512

    Modified Needleman-Wunsch algorithm for clinical pathway clustering

    Get PDF
    Clinical pathways are used to guide clinicians to provide a standardised delivery of care. Because of their standardisation, the aim of clinical pathways is to reduce variation in both care process and patient outcomes. When learning clinical pathways from data through data mining, it is common practice to represent each patient pathway as a string corresponding to their movements through activities. Clustering techniques are popular methods for pathway mining, and therefore this paper focuses on distance metrics applied to string data for k-medoids clustering. The two main aims are to firstly, develop a technique that seamlessly integrates expert information with data and secondly, to develop a string distance metric for the purpose of process data. The overall goal was to allow for more meaningful clustering results to be found by adding context into the string similarity calculation. Eight common distance metrics and their applicability are discussed. These distance metrics prove to give an arbitrary distance, without consideration for context, and each produce different results. As a result, this paper describes the development of a new distance metric, the modified Needleman–Wunsch algorithm, that allows for expert interaction with the calculation by assigning groupings and rankings to activities, which provide context to the strings. This algorithm has been developed in partnership with UK’s National Health Service (NHS) with the focus on a lung cancer pathway, however the handling of the data and algorithm allows for application to any disease type. This method is contained within Sim.Pro.Flow, a publicly available decision support tool

    Sustainable Smart Cities and Smart Villages Research

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [There is ever more research on smart cities and new interdisciplinary approaches proposed on the study of smart cities. At the same time, problems pertinent to communities inhabiting rural areas are being addressed, as part of discussions in contigious fields of research, be it environmental studies, sociology, or agriculture. Even if rural areas and countryside communities have previously been a subject of concern for robust policy frameworks, such as the European Union’s Cohesion Policy and Common Agricultural Policy Arguably, the concept of ‘the village’ has been largely absent in the debate. As a result, when advances in sophisticated information and communication technology (ICT) led to the emergence of a rich body of research on smart cities, the application and usability of ICT in the context of a village has remained underdiscussed in the literature. Against this backdrop, this volume delivers on four objectives. It delineates the conceptual boundaries of the concept of ‘smart village’. It highlights in which ways ‘smart village’ is distinct from ‘smart city’. It examines in which ways smart cities research can enrich smart villages research. It sheds light on the smart village research agenda as it unfolds in European and global contexts.
    corecore