25 research outputs found

    A New Approach for Jamming Attacks using -Packet-Hiding Methods

    Get PDF
    The open nature of the wireless medium leaves it vulnerable to intentional interference attacks, typically referred to as jamming. This intentional interference with wireless transmissions can be used as a launch pad for mounting Denial - of - Service attacks on wireless networks. Typically, jamming has been addressed under an external threat model. In this work, we address the problem of selective jamming attacks in wireless networks. In these attacks, the adversary is active only for a short period of time, selectively targeting messages of high importance. We illustrate the advantages of selective jamming in terms of network performance degradation and adversary effort by presenting two case studies; a selective attack o n TCP and one on routing. We show tha t selective jamming attacks can be launched by performing real - time packet classification at the physical layer. To mitigate these attacks, we develop three schemes that prevent real - time packet classification by combining cryptographic primitives with physical - layer attributes. O ur methods and evaluate their computational and communication overhea

    Portfolio Selection in Multipath Routing for Traffic Allocation

    Get PDF
    Multiple-path source routing protocols allow a data source node to distribute the total traffic among available paths. In this article, we consider the problem of jammingaware source routing in which the source node performs traffic allocation based on empirical jamming statistics at individual network nodes. We formulate this traffic allocation as a lossy network flow optimization problem using portfolio selection theory from financial statistics. We show that in multi-source networks, this centralized optimization problem can be solved using a distributed algorithm based on decomposition in network utility maximization (NUM). We demonstrate the network2019;s ability to estimate the impact of jamming and incorporate these estimates into the traffic allocation problem. Finally, we simulate the achievable throughput using our proposed traffic allocation method in several scenarios

    Optimization and Efficient Transmission Schedule for 802.11 Networks with Jamming Characteristics

    Get PDF
    In Wireless 802.11 networks, Multiple-path source routing allows data source node to distribute the total traffic among the possible available paths. However, in this case jamming effects were not considered. Recent work has presented jamming mitigation scheme, anti-jamming Reinforcement System on 802.11 networks by assessing physical-layer functions such as rate adaptation and power control. Rate adaptation algorithms significantly degrade network performance. Appropriate tuning of carrier sensing threshold allows transmitter to send packets even on jam that enable receiver to capture desired signal. Efficient schedules need to be investigated for redundant transmission to perform well in presence of jammer. In this paper, the proposal in our work presents an Efficient Time and Transmission Schedule Scheme for wireless 802.11 networks in presence of jamming that guarantee low waiting time and low staleness of data. Schedules are optimal even jamming signal has energy limitations. Each packet is encoded by an errorcorrecting code (Reed-Solomon). Reed solomon code allow schedule to minimize waiting time of the clients and staleness of the received data. Jammers have restrictions on length of jamming pulses and length of intervals between subsequent jamming pulses

    Anti-Jamming Schedules for Wireless Data Broadcast Systems

    Get PDF
    Modern society is heavily dependent on wireless networks for providing voice and data communications. Wireless data broadcast has recently emerged as an attractive way to disseminate dynamic data to a large number of clients. In data broadcast systems, the server proactively transmits the information on a downlink channel; the clients access the data by listening to the channel. Wireless data broadcast systems can serve a large number of heterogeneous clients, minimizing power consumption as well as protecting the privacy of the clients' locations. The availability and relatively low cost of antennas resulted in a number of potential threats to the integrity of the wireless infrastructure. In particular, the data broadcast systems are vulnerable to jamming, i.e., the use of active signals to prevent data broadcast. The goal of jammers is to cause disruption, resulting in long waiting times and excessive power consumption. In this paper we investigate efficient schedules for wireless data broadcast that perform well in the presence of a jammer. We show that the waiting time of client can be reduced by adding redundancy to the schedule and establish upper and lower bounds on the achievable minimum waiting time under different requirements on the staleness of the transmitted data

    Knock! Knock! Who Is There? Investigating Data Leakage from a Medical Internet of Things Hijacking Attack

    Get PDF
    The amalgamation of Medical Internet of Things (MIoT) devices into everyday life is influencing the landscape of modern medicine. The implementation of these devices potentially alleviates the pressures and physical demands of healthcare systems through the remote monitoring of patients. However, there are concerns that the emergence of MIoT ecosystems is introducing an assortment of security and privacy challenges. While previous research has shown that multiple vulnerabilities exist within MIoT devices, minimal research investigates potential data leakage from MIoT devices through hijacking attacks. The research contribution of this paper is twofold. First, it provides a proof of concept that certain MIoT devices and their accompanying smartphone applications are vulnerable to hijacking attacks. Second, it highlights the effectiveness of using digital forensics tools as a lens to identify patient and medical device information on a hijacker’s smartphone
    corecore