637 research outputs found

    Approximating survivable networks with β-metric costs

    Get PDF
    AbstractThe Survivable Network Design (SND) problem seeks a minimum-cost subgraph that satisfies prescribed node-connectivity requirements. We consider SND on both directed and undirected complete graphs with β-metric costs when c(xz)⩽β[c(xy)+c(yz)] for all x,y,z∈V, which varies from uniform costs (β=1/2) to metric costs (β=1).For the k-Connected Subgraph (k-CS) problem our ratios are: 1+2βk(1−β)−12k−1 for undirected graphs, and 1+4β3k(1−3β2)−12k−1 for directed graphs and 12⩽β<13. For undirected graphs this improves the ratios β1−β of Böckenhauer et al. (2008) [3] and 2+βkn of Kortsarz and Nutov (2003) [11] for all k⩾4 and 12+3k−22(4k2−7k+2)⩽β⩽k2(k+1)2−2. We also show that SND admits the ratios 2β1−β for undirected graphs, and 4β31−3β2 for directed graphs with 1/2⩽β<1/3. For two important particular cases of SND, so-called Subset k-CS and Rooted SND, our ratios are 2β31−3β2 for directed graphs and β1−β for subset k-CS on undirected graphs

    A sharp threshold for random graphs with a monochromatic triangle in every edge coloring

    Full text link
    Let R\R be the set of all finite graphs GG with the Ramsey property that every coloring of the edges of GG by two colors yields a monochromatic triangle. In this paper we establish a sharp threshold for random graphs with this property. Let G(n,p)G(n,p) be the random graph on nn vertices with edge probability pp. We prove that there exists a function c^=c^(n)\hat c=\hat c(n) with 000 0, as nn tends to infinity Pr[G(n,(1-\eps)\hat c/\sqrt{n}) \in \R ] \to 0 and Pr [ G(n,(1+\eps)\hat c/\sqrt{n}) \in \R ] \to 1. A crucial tool that is used in the proof and is of independent interest is a generalization of Szemer\'edi's Regularity Lemma to a certain hypergraph setting.Comment: 101 pages, Final version - to appear in Memoirs of the A.M.

    The Rise of Innovation Districts: A New Geography of Innovation in America

    Get PDF
    As the United States slowly emerges from the great recession, a remarkable shify is occurring in the spatial geogrpahy of innovation. For the past 50 years, the landscape of innovation has been dominated by places like Silicon Valley - suburban corridors of spatially isolated corporate campuses, accessible only by car, with little emphasis on the quality of life or on integrating work, housing, and recreation. A new complementary urban model is now emerging, giving rise to what we and others are calling "innovation districts." These districts, by our definition, are geographic areas where leading-edge anchor institutions and companies cluster and connect with start-ups, business incubators, and accelerators. They are also physically compact, transit-accessible, and technicall
    • …
    corecore