2,504 research outputs found

    On isolation of singular zeros of multivariate analytic systems

    Full text link
    We give a separation bound for an isolated multiple root xx of a square multivariate analytic system ff satisfying that an operator deduced by adding Df(x)Df(x) and a projection of D2f(x)D^2f(x) in a direction of the kernel of Df(x)Df(x) is invertible. We prove that the deflation process applied on ff and this kind of roots terminates after only one iteration. When xx is only given approximately, we give a numerical criterion for isolating a cluster of zeros of ff near xx. We also propose a lower bound of the number of roots in the cluster.Comment: 17 page

    Clustering Complex Zeros of Triangular Systems of Polynomials

    Get PDF
    This paper gives the first algorithm for finding a set of natural ϵ\epsilon-clusters of complex zeros of a triangular system of polynomials within a given polybox in Cn\mathbb{C}^n, for any given ϵ>0\epsilon>0. Our algorithm is based on a recent near-optimal algorithm of Becker et al (2016) for clustering the complex roots of a univariate polynomial where the coefficients are represented by number oracles. Our algorithm is numeric, certified and based on subdivision. We implemented it and compared it with two well-known homotopy solvers on various triangular systems. Our solver always gives correct answers, is often faster than the homotopy solver that often gives correct answers, and sometimes faster than the one that gives sometimes correct results.Comment: Research report V6: description of the main algorithm update

    New Acceleration of Nearly Optimal Univariate Polynomial Root-findERS

    Full text link
    Univariate polynomial root-finding has been studied for four millennia and is still the subject of intensive research. Hundreds of efficient algorithms for this task have been proposed. Two of them are nearly optimal. The first one, proposed in 1995, relies on recursive factorization of a polynomial, is quite involved, and has never been implemented. The second one, proposed in 2016, relies on subdivision iterations, was implemented in 2018, and promises to be practically competitive, although user's current choice for univariate polynomial root-finding is the package MPSolve, proposed in 2000, revised in 2014, and based on Ehrlich's functional iterations. By proposing and incorporating some novel techniques we significantly accelerate both subdivision and Ehrlich's iterations. Moreover our acceleration of the known subdivision root-finders is dramatic in the case of sparse input polynomials. Our techniques can be of some independent interest for the design and analysis of polynomial root-finders.Comment: 89 pages, 5 figures, 2 table

    Certifying isolated singular points and their multiplicity structure

    Get PDF
    This paper presents two new constructions related to singular solutions of polynomial systems. The first is a new deflation method for an isolated singular root. This construc-tion uses a single linear differential form defined from the Jacobian matrix of the input, and defines the deflated system by applying this differential form to the original system. The advantages of this new deflation is that it does not introduce new variables and the increase in the number of equations is linear instead of the quadratic increase of previous methods. The second construction gives the coefficients of the so-called inverse system or dual basis, which defines the multiplicity structure at the singular root. We present a system of equations in the original variables plus a relatively small number of new vari-ables. We show that the roots of this new system include the original singular root but now with multiplicity one, and the new variables uniquely determine the multiplicity structure. Both constructions are "exact", meaning that they permit one to treat all conjugate roots simultaneously and can be used in certification procedures for singular roots and their multiplicity structure with respect to an exact rational polynomial system

    Punctual Hilbert Schemes and Certified Approximate Singularities

    Get PDF
    In this paper we provide a new method to certify that a nearby polynomial system has a singular isolated root with a prescribed multiplicity structure. More precisely, given a polynomial system f =(f_1,…,f_N)∈C[x_1,…,x_n]N=(f\_1, \ldots, f\_N)\in C[x\_1, \ldots, x\_n]^N, we present a Newton iteration on an extended deflated system that locally converges, under regularity conditions, to a small deformation of ff such that this deformed system has an exact singular root. The iteration simultaneously converges to the coordinates of the singular root and the coefficients of the so called inverse system that describes the multiplicity structure at the root. We use α\alpha-theory test to certify the quadratic convergence, and togive bounds on the size of the deformation and on the approximation error. The approach relies on an analysis of the punctual Hilbert scheme, for which we provide a new description. We show in particular that some of its strata can be rationally parametrized and exploit these parametrizations in the certification. We show in numerical experimentation how the approximate inverse system can be computed as a starting point of the Newton iterations and the fast numerical convergence to the singular root with its multiplicity structure, certified by our criteria.Comment: International Symposium on Symbolic and Algebraic Computation, Jul 2020, Kalamata, Franc
    • …
    corecore