This paper gives the first algorithm for finding a set of natural
ϵ-clusters of complex zeros of a triangular system of polynomials
within a given polybox in Cn, for any given ϵ>0. Our
algorithm is based on a recent near-optimal algorithm of Becker et al (2016)
for clustering the complex roots of a univariate polynomial where the
coefficients are represented by number oracles.
Our algorithm is numeric, certified and based on subdivision. We implemented
it and compared it with two well-known homotopy solvers on various triangular
systems. Our solver always gives correct answers, is often faster than the
homotopy solver that often gives correct answers, and sometimes faster than the
one that gives sometimes correct results.Comment: Research report V6: description of the main algorithm update