426 research outputs found

    Energy Efficient Small Cell Planning For High Capacity Wireless Networks

    Get PDF
    This thesis presents a new strategy to densify Small Cells (i.e., add more low powered base stations within macro networks) and enhance the coverage and capacity of Heterogeneous Networks. This is accomplished by designing Micro Cell for outdoor applications, Pico and Femtocell for indoor applications. It is shown that, there exists a free space propagation medium in all propagation environments due to Fresnel zones, and the path loss slope within this zone is similar to free space propagation medium. This forms the basis of our development of the present work. The salient feature of the proposed work has two main considerations (a) The cell radius of Small Cells must be within the first Fresnel zone break point, and (b) The minimum inter-cell distance must be greater than twice of Small Cell radius. The proposed network is simulated in real a radio network simulator called ATOLL. The simulation results showed that densify Small Cells not only enhanced the capacity and coverage of Heterogeneous Networks but also improved the carrier to interference ratio significantly. Since the proposed work allows UE (user equipment) to have Line of Sight (LOS) communication with the serving cell, and UE can have higher uplink (UL) signal to interference plus noise ratio (SINR) that will further allow UE to reduce its transmission power, which will consequently lead to a longer battery life for the UE and reduce the interference in the system

    Radio Resource Management in NB-IoT Systems:Empowered by Interference Prediction and Flexible Duplexing

    Get PDF
    NB-IoT is a promising cellular technology for enabling low cost, low power, long-range connectivity to IoT devices. With the bandwidth requirement of 180 kHz, it provides the flexibility to deploy within the existing LTE band. However, this raises serious concerns about the performance of the technology due to severe interference from multi-tier 5G HetNets. Furthermore, as NB-IoT is based on HD-FDD, the symmetric allocation of spectrum band between the downlink and uplink results in underutilization of resources, particularly in the case of asymmetric traffic distribution. Therefore, an innovative RRM strategy needs to be devised to improve spectrum efficiency and device connectivity. This article presents the detailed design challenges that need to be addressed for the RRM of NB-IoT and proposes a novel framework to devise an efficient resource allocation scheme by exploiting cooperative interference prediction and flexible duplexing techniques

    Técnicas de equalização híbridas para sistemas heterogéneos na banda das ondas milimétricas

    Get PDF
    With the constant demand for better service and higher transmission rates current technologies are reaching the limits of the channel capacity. Although, technologies such as MIMO and Heterogeneous systems appear to increase the channel capacity by introducing more antennas at the transceivers making the link between users and base station more reliable. Furthermore, the current spectrum, sub-6GHz, is becoming saturated and due to the properties of such frequencies the deployment of heterogeneous systems can introduce some levels of interference. Towards improving future communication systems a new part of the frequencies spectrum available should be used, researchers have their eyes on the mmWave band. This band allows to increase the carrier frequency and respective signal bandwidth and therefore increase the transmission speeds, moreover the properties of such frequencies unlock some advantages over the frequencies used in the sub-6G band. Additionally, mmWave band can be combined with massive MIMO technology to enhance the system capacity and to deploy more antenna elements in the transceivers. One more key technology that improves the energy efficiency in systems with hundreds of antenna elements is the possibility to combine analog and digital precoding techniques denoted as hybrid architectures. The main advantages of such techniques is that contrary to the full digital precoding processing used in current systems this new architecture allows to reduce the number of RF chains per antenna leading to improved energy efficiency. Furthermore to handle heterogeneous systems that have small-cells within the macro-cell, techniques such as Interference Alignment (IA) can be used to efficiently remove the existing multi-tier interference. In this dissertation a massive MIMO mmWave heterogeneous system is implemented and evaluated. It is designed analog-digital equalizers to efficiently remove both the intra an inter-tier interference. At digital level, an interference alignment technique is used to remove the interference and increase the spectral efficiency. The results showed that the proposed solutions are efficient to remove the macro and small cells interference.Com a constante procura de melhores serviços e taxas de transmissão mais elevadas, as tecnologias atuais estão a atingir os limites de capacidade do canal. Contudo tecnologias como o MIMO e os sistemas heterogéneos permitem aumentar a capacidade do canal através da introdução de mais antenas nos transcetores e através da implementação de pequenos pontos de acesso espalhados pela célula primária, com o intuito de tornar as ligações entre os utilizadores e a estação base mais fiáveis. Tendo também em atenção que o espectro atual, sub-6GHz, está sobrecarregado e que devido às propriedades das frequências utilizadas a implementação de sistemas heterogéneos pode levar a níveis de interferência insustentáveis. Por modo a resolver esta sobrecarga futuros sistemas de comunicação devem aproveitar uma maior parte do espectro de frequências disponível. A banda das ondas milimétricas (mmWave) tem sido apontada como solução, o que permite aumentar a frequência utilizada para transportar o sinal e consequentemente aumentar as velocidades de transmissão. Uma outra vantagem da banda mmWave é que pode ser combinada com a tecnologia MIMO massivo, permitindo implementar mais elementos de antena nos terminais e consequentemente aumentar a capacidade do sistema. Umas das tecnologias desenvolvida para melhorar a eficiência energética em sistemas com centenas de antenas é a possibilidade de combinar técnicas de codificação analógica e digital, designadas como arquiteturas híbridas. A principal vantagem desta técnica é que, contrariamente ao processamento feito nos sistemas atuais, totalmente no domínio digital, esta nova arquitetura permite reduzir o número de cadeias RF por antena. Com o intuito de reduzir a interferência em sistemas heterogéneos, técnicas como o alinhamento de interferência são usadas para separar utilizadores das células secundárias dos utilizadores das células primárias de modo a reduzir a interferência multi-nível existente no sistema geral. Nesta dissertação, é implementado e avaliado um sistema heterogéneo que combina MIMO massivo e ondas milimétricas. Este sistema é projetado com equalizadores analógico-digitais para remover com eficiência a interferência intra e inter-camadas. No domínio digital é utilizada a técnica de alinhamento de interferência para remover a interferência e aumentar a eficiência espectral. Os resultados mostram que as soluções propostas são eficientes para remover a interferência entre as células secundárias e a primária.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Interference mitigation in cognitive femtocell networks

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.Femtocells have been introduced as a solution to poor indoor coverage in cellular communication which has hugely attracted network operators and stakeholders. However, femtocells are designed to co-exist alongside macrocells providing improved spatial frequency reuse and higher spectrum efficiency to name a few. Therefore, when deployed in the two-tier architecture with macrocells, it is necessary to mitigate the inherent co-tier and cross-tier interference. The integration of cognitive radio (CR) in femtocells introduces the ability of femtocells to dynamically adapt to varying network conditions through learning and reasoning. This research work focuses on the exploitation of cognitive radio in femtocells to mitigate the mutual interference caused in the two-tier architecture. The research work presents original contributions in mitigating interference in femtocells by introducing practical approaches which comprises a power control scheme where femtocells adaptively controls its transmit power levels to reduce the interference it causes in a network. This is especially useful since femtocells are user deployed as this seeks to mitigate interference based on their blind placement in an indoor environment. Hybrid interference mitigation schemes which combine power control and resource/scheduling are also implemented. In a joint threshold power based admittance and contention free resource allocation scheme, the mutual interference between a Femtocell Access Point (FAP) and close-by User Equipments (UE) is mitigated based on admittance. Also, a hybrid scheme where FAPs opportunistically use Resource Blocks (RB) of Macrocell User Equipments (MUE) based on its traffic load use is also employed. Simulation analysis present improvements when these schemes are applied with emphasis in Long Term Evolution (LTE) networks especially in terms of Signal to Interference plus Noise Ratio (SINR)

    Evolution Toward 5G Mobile Networks - A Survey on Enabling Technologies

    Get PDF
    In this paper, an extensive review has been carried out on the trends of existing as well as proposed potential enabling technologies that are expected to shape the fifth generation (5G) mobile wireless networks. Based on the classification of the trends, we develop a 5G network architectural evolution framework that comprises three evolutionary directions, namely, (1) radio access network node and performance enabler, (2) network control programming platform, and (3) backhaul network platform and synchronization. In (1), we discuss node classification including low power nodes in emerging machine-type communications, and network capacity enablers, e.g., millimeter wave communications and massive multiple-input multiple-output. In (2), both logically distributed cell/device-centric platforms, and logically centralized conventional/wireless software defined networking control programming approaches are discussed. In (3), backhaul networks and network synchronization are discussed. A comparative analysis for each direction as well as future evolutionary directions and challenges toward 5G networks are discussed. This survey will be helpful for further research exploitations and network operators for a smooth evolution of their existing networks toward 5G networks
    corecore