50,122 research outputs found

    New Features in FormCalc 4

    Full text link
    FormCalc is a Mathematica package for the automatic computation of tree-level and one-loop Feynman amplitudes. It accepts diagrams generated by FeynArts, simplifies them, and generates a complete Fortran code for their numerical evaluation. Version 4 includes new features which enhance performance, convenience of use, and modularity/code reusability.Comment: 5 pages, Talk given at the 7th DESY Workshop On Elementary Particle Theory: Loops And Legs In Quantum Field Theory, Zinnowitz, Germany, 25-30 Apr 200

    Rewriting Constraint Models with Metamodels

    Get PDF
    An important challenge in constraint programming is to rewrite constraint models into executable programs calculat- ing the solutions. This phase of constraint processing may require translations between constraint programming lan- guages, transformations of constraint representations, model optimizations, and tuning of solving strategies. In this paper, we introduce a pivot metamodel describing the common fea- tures of constraint models including different kinds of con- straints, statements like conditionals and loops, and other first-class elements like object classes and predicates. This metamodel is general enough to cope with the constructions of many languages, from object-oriented modeling languages to logic languages, but it is independent from them. The rewriting operations manipulate metamodel instances apart from languages. As a consequence, the rewriting operations apply whatever languages are selected and they are able to manage model semantic information. A bridge is created between the metamodel space and languages using parsing techniques. Tools from the software engineering world can be useful to implement this framework

    Conflict Detection for Edits on Extended Feature Models using Symbolic Graph Transformation

    Full text link
    Feature models are used to specify variability of user-configurable systems as appearing, e.g., in software product lines. Software product lines are supposed to be long-living and, therefore, have to continuously evolve over time to meet ever-changing requirements. Evolution imposes changes to feature models in terms of edit operations. Ensuring consistency of concurrent edits requires appropriate conflict detection techniques. However, recent approaches fail to handle crucial subtleties of extended feature models, namely constraints mixing feature-tree patterns with first-order logic formulas over non-Boolean feature attributes with potentially infinite value domains. In this paper, we propose a novel conflict detection approach based on symbolic graph transformation to facilitate concurrent edits on extended feature models. We describe extended feature models formally with symbolic graphs and edit operations with symbolic graph transformation rules combining graph patterns with first-order logic formulas. The approach is implemented by combining eMoflon with an SMT solver, and evaluated with respect to applicability.Comment: In Proceedings FMSPLE 2016, arXiv:1603.0857

    Semantics of trace relations in requirements models for consistency checking and inferencing

    Get PDF
    Requirements traceability is the ability to relate requirements back to stakeholders and forward to corresponding design artifacts, code, and test cases. Although considerable research has been devoted to relating requirements in both forward and backward directions, less attention has been paid to relating requirements with other requirements. Relations between requirements influence a number of activities during software development such as consistency checking and change management. In most approaches and tools, there is a lack of precise definition of requirements relations. In this respect, deficient results may be produced. In this paper, we aim at formal definitions of the relation types in order to enable reasoning about requirements relations. We give a requirements metamodel with commonly used relation types. The semantics of the relations is provided with a formalization in first-order logic. We use the formalization for consistency checking of relations and for inferring new relations. A tool has been built to support both reasoning activities. We illustrate our approach in an example which shows that the formal semantics of relation types enables new relations to be inferred and contradicting relations in requirements documents to be determined. The application of requirements reasoning based on formal semantics resolves many of the deficiencies observed in other approaches. Our tool supports better understanding of dependencies between requirements

    Driving tasks and new information technologies

    Get PDF

    Extensible Component Based Architecture for FLASH, A Massively Parallel, Multiphysics Simulation Code

    Full text link
    FLASH is a publicly available high performance application code which has evolved into a modular, extensible software system from a collection of unconnected legacy codes. FLASH has been successful because its capabilities have been driven by the needs of scientific applications, without compromising maintainability, performance, and usability. In its newest incarnation, FLASH3 consists of inter-operable modules that can be combined to generate different applications. The FLASH architecture allows arbitrarily many alternative implementations of its components to co-exist and interchange with each other, resulting in greater flexibility. Further, a simple and elegant mechanism exists for customization of code functionality without the need to modify the core implementation of the source. A built-in unit test framework providing verifiability, combined with a rigorous software maintenance process, allow the code to operate simultaneously in the dual mode of production and development. In this paper we describe the FLASH3 architecture, with emphasis on solutions to the more challenging conflicts arising from solver complexity, portable performance requirements, and legacy codes. We also include results from user surveys conducted in 2005 and 2007, which highlight the success of the code.Comment: 33 pages, 7 figures; revised paper submitted to Parallel Computin
    corecore