6,569 research outputs found

    On graphs double-critical with respect to the colouring number

    Get PDF
    The colouring number col(G) of a graph G is the smallest integer k for which there is an ordering of the vertices of G such that when removing the vertices of G in the specified order no vertex of degree more than k-1 in the remaining graph is removed at any step. An edge e of a graph G is said to be &em;double-col-critical if the colouring number of G-V(e) is at most the colouring number of G minus 2. A connected graph G is said to be double-col-critical if each edge of G is double-col-critical. We characterise the double-col-critical graphs with colouring number at most 5. In addition, we prove that every 4-col-critical non-complete graph has at most half of its edges being double-col-critical, and that the extremal graphs are precisely the odd wheels on at least six vertices. We observe that for any integer k greater than 4 and any positive number ε, there is a k-col-critical graph with the ratio of double-col-critical edges between 1- ε and 1

    On graphs double-critical with respect to the colouring number

    Get PDF
    The colouring number col(G) of a graph G is the smallest integer k for which there is an ordering of the vertices of G such that when removing the vertices of G in the specified order no vertex of degree more than k-1 in the remaining graph is removed at any step. An edge e of a graph G is said to be &em;double-col-critical if the colouring number of G-V(e) is at most the colouring number of G minus 2. A connected graph G is said to be double-col-critical if each edge of G is double-col-critical. We characterise the double-col-critical graphs with colouring number at most 5. In addition, we prove that every 4-col-critical non-complete graph has at most half of its edges being double-col-critical, and that the extremal graphs are precisely the odd wheels on at least six vertices. We observe that for any integer k greater than 4 and any positive number ε, there is a k-col-critical graph with the ratio of double-col-critical edges between 1- ε and 1

    Some snarks are worse than others

    Full text link
    Many conjectures and open problems in graph theory can either be reduced to cubic graphs or are directly stated for cubic graphs. Furthermore, it is known that for a lot of problems, a counterexample must be a snark, i.e. a bridgeless cubic graph which is not 3--edge-colourable. In this paper we deal with the fact that the family of potential counterexamples to many interesting conjectures can be narrowed even further to the family S≥5{\cal S}_{\geq 5} of bridgeless cubic graphs whose edge set cannot be covered with four perfect matchings. The Cycle Double Cover Conjecture, the Shortest Cycle Cover Conjecture and the Fan-Raspaud Conjecture are examples of statements for which S≥5{\cal S}_{\geq 5} is crucial. In this paper, we study parameters which have the potential to further refine S≥5{\cal S}_{\geq 5} and thus enlarge the set of cubic graphs for which the mentioned conjectures can be verified. We show that S≥5{\cal S}_{\geq 5} can be naturally decomposed into subsets with increasing complexity, thereby producing a natural scale for proving these conjectures. More precisely, we consider the following parameters and questions: given a bridgeless cubic graph, (i) how many perfect matchings need to be added, (ii) how many copies of the same perfect matching need to be added, and (iii) how many 2--factors need to be added so that the resulting regular graph is Class I? We present new results for these parameters and we also establish some strong relations between these problems and some long-standing conjectures.Comment: 27 pages, 16 figure

    Measurable versions of Vizing's theorem

    Get PDF
    We establish two versions of Vizing's theorem for Borel multi-graphs whose vertex degrees and edge multiplicities are uniformly bounded by respectively Δ\Delta and π\pi. The ``approximate'' version states that, for any Borel probability measure on the edge set and any ϵ>0\epsilon>0, we can properly colour all but ϵ\epsilon -fraction of edges with Δ+π\Delta+\pi colours in a Borel way. The ``measurable'' version, which is our main result, states that if, additionally, the measure is invariant, then there is a measurable proper edge colouring of the whole edge set with at most Δ+π\Delta+\pi colours

    Characterising and recognising game-perfect graphs

    Get PDF
    Consider a vertex colouring game played on a simple graph with kk permissible colours. Two players, a maker and a breaker, take turns to colour an uncoloured vertex such that adjacent vertices receive different colours. The game ends once the graph is fully coloured, in which case the maker wins, or the graph can no longer be fully coloured, in which case the breaker wins. In the game gBg_B, the breaker makes the first move. Our main focus is on the class of gBg_B-perfect graphs: graphs such that for every induced subgraph HH, the game gBg_B played on HH admits a winning strategy for the maker with only ω(H)\omega(H) colours, where ω(H)\omega(H) denotes the clique number of HH. Complementing analogous results for other variations of the game, we characterise gBg_B-perfect graphs in two ways, by forbidden induced subgraphs and by explicit structural descriptions. We also present a clique module decomposition, which may be of independent interest, that allows us to efficiently recognise gBg_B-perfect graphs.Comment: 39 pages, 8 figures. An extended abstract was accepted at the International Colloquium on Graph Theory (ICGT) 201
    • …
    corecore