215 research outputs found

    Development of a SQUID magnetometry system for cryogenic neutron electric dipole moment experiment

    Get PDF
    A measurement of the neutron electric dipole moment (nEDM) could hold the key to understanding why the visible universe is the way it is: why matter should predominate over antimatter. As a charge-parity violating (CPV) quantity, an nEDM could provide an insight into new mechanisms that address this baryon asymmetry. The motivation for an improved sensitivity to an nEDM is to find it to be non-zero at a level consistent with certain beyond the Standard Model theories that predict new sources of CPV, or to establish a new limit that constrains them. CryoEDM is an experiment that sought to better the current limit of dn<2.9×1026e|d_n| < 2.9 \times 10^{-26}\,e\,cm by an order of magnitude. It is designed to measure the nEDM via the Ramsey Method of Separated Oscillatory Fields, in which it is critical that the magnetic field remains stable throughout. A way of accurately tracking the magnetic fields, moreover at a temperature 0.5\sim 0.5\,K, is crucial for CryoEDM, and for future cryogenic projects. This thesis presents work focussing on the development of a 12-SQUID magnetometry system for CryoEDM, that enables the magnetic field to be monitored to a precision of 0.10.1\,pT. A major component of its infrastructure is the superconducting capillary shields, which screen the input lines of the SQUIDs from the pick up of spurious magnetic fields that will perturb a SQUID's measurement. These are shown to have a transverse shielding factor of >1×107> 1 \times 10^{7}, which is a few orders of magnitude greater than the calculated requirement. Efforts to characterise the shielding of the SQUID chips themselves are also discussed. The use of Cryoperm for shields reveals a tension between improved SQUID noise and worse neutron statistics. Investigations show that without it, SQUIDs have an elevated noise when cooled in a substantial magnetic field; with it, magnetostatic simulations suggest that it is detrimental to the polarisation of neutrons in transport. The findings suggest that with proper consideration, it is possible to reach a compromise between the two behaviours. Computational work to develop a simulation of SQUID data is detailed, which is based on the Laplace equation for the magnetic scalar potential. These data are ultimately used in the development of a linear regression technique to determine the volume-averaged magnetic field in the neutron cells. This proves highly effective in determining the fields within the 0.10.1\,pT requirement under certain conditions

    Hemodynamic Quantifications By Contrast-Enhanced Ultrasound:From In-Vitro Modelling To Clinical Validation

    Get PDF

    Modelling transmission dynamics of covid-19 during Pre-vaccination period in Malaysia: a predictive guiseird model using streamlit

    Get PDF
    Coronavirus disease (COVID-19) is a major health threat worldwide pandemic, first identified in Malaysia on 25 January 2020. This outbreak can be represented in the mathematical expressions of a non-linear system of ordinary differential equations (ODEs). With the lack of a predictive SEIRD model in terms of Graphical Users Interface (GUI) in Malaysia, this paper aims to model the COVID-19 outbreak in Malaysia during the pre-vaccination period using the Susceptible-Exposed-Infected-Recovered-Death (SEIRD) model with time-varying parameters, then develop a GUI-SEIRD predictive model using Streamlit Python library. This GUI-SEIRD predictive model considers different values of the proportion of the quarantine-abiding population (r) and three different decisions of MCO lifted date to forecast the number of active cases (I) on 15 October 2020 that gives insightful information to government agencies. The mathematical model is solved using Scipy odeint function, which uses Livermore Solver for Ordinary Differential Equations with an Automatic method switching (LSODA) algorithm. The time-varying coefficients of SEIRD model that best fit the real data of COVID-19 cases are obtained using the Nelder-Mead optimization algorithm. This an extended SIRD model with exposed (E) compartment becoming SEIRD, leads to a robust model. It adequately fitted two datasets of Malaysian COVID-19 indicated by the slightest average values of root mean square error (RMSE) as compared to other existing models. The results highlight that the larger the values of the proportion of the quarantine-abiding population (r) and the later the date of the lifted MCO, the faster Malaysia reaches disease free equilibrium

    Elements of Ion Linear Accelerators, Calm in The Resonances, Other_Tales

    Full text link
    The main part of this book, Elements of Linear Accelerators, outlines in Part 1 a framework for non-relativistic linear accelerator focusing and accelerating channel design, simulation, optimization and analysis where space charge is an important factor. Part 1 is the most important part of the book; grasping the framework is essential to fully understand and appreciate the elements within it, and the myriad application details of the following Parts. The treatment concentrates on all linacs, large or small, intended for high-intensity, very low beam loss, factory-type application. The Radio-Frequency-Quadrupole (RFQ) is especially developed as a representative and the most complicated linac form (from dc to bunched and accelerated beam), extending to practical design of long, high energy linacs, including space charge resonances and beam halo formation, and some challenges for future work. Also a practical method is presented for designing Alternating-Phase- Focused (APF) linacs with long sequences and high energy gain. Full open-source software is available. The following part, Calm in the Resonances and Other Tales, contains eyewitness accounts of nearly 60 years of participation in accelerator technology. (September 2023) The LINACS codes are released at no cost and, as always,with fully open-source coding. (p.2 & Ch 19.10)Comment: 652 pages. Some hundreds of figures - all images, there is no data in the figures. (September 2023) The LINACS codes are released at no cost and, as always,with fully open-source coding. (p.2 & Ch 19.10

    Hemodynamic Quantifications By Contrast-Enhanced Ultrasound:From In-Vitro Modelling To Clinical Validation

    Get PDF

    Support matrix machine: A review

    Full text link
    Support vector machine (SVM) is one of the most studied paradigms in the realm of machine learning for classification and regression problems. It relies on vectorized input data. However, a significant portion of the real-world data exists in matrix format, which is given as input to SVM by reshaping the matrices into vectors. The process of reshaping disrupts the spatial correlations inherent in the matrix data. Also, converting matrices into vectors results in input data with a high dimensionality, which introduces significant computational complexity. To overcome these issues in classifying matrix input data, support matrix machine (SMM) is proposed. It represents one of the emerging methodologies tailored for handling matrix input data. The SMM method preserves the structural information of the matrix data by using the spectral elastic net property which is a combination of the nuclear norm and Frobenius norm. This article provides the first in-depth analysis of the development of the SMM model, which can be used as a thorough summary by both novices and experts. We discuss numerous SMM variants, such as robust, sparse, class imbalance, and multi-class classification models. We also analyze the applications of the SMM model and conclude the article by outlining potential future research avenues and possibilities that may motivate academics to advance the SMM algorithm

    Aeroelastic instabilities of an airfoil in transitional flow regimes

    Get PDF
    Cette thèse porte sur l'étude de l'instabilité aéroélastique provenant de l'interaction fluide–structure, dans le cas d'une aile rigide montée sur un ressort en torsion. L'étude est centrée sur le phénomène de flottement dû à un décollement laminaire, et plus précisément sur les oscillations (en torsion) auto-entretenues détectées expérimentalement pour un profil NACA0012 à faible incidence, dans la gamme de nombre de Reynolds dits transitionnels (Re in [10^4 – 10^5]), caractérisé par un décollement de la couche limite initialement laminaire, suivi d'une transition et d'un rattachement. L'objectif principal de la thèse est d'expliquer ce phénomène en se basant sur des concepts d'instabilité. Pour ce faire, différentes approches numériques ont été conduites: des simulations numériques bidimensionnelles et des simulations numériques tridimensionnelles (DNS). Ces approches ont en suite servi de base à des analyses de stabilité linéaire (LSA) autour d'un champ moyen ou d'un champ périodique (analyse de Floquet). Le deuxième objectif vise à explorer les différents scénarios non linéaires qui apparaissent dans cette gamme de Reynolds. La première partie de la thèse est consacrée à la caractérisation de l'écoulement autour de l'aile pour des angles d'incidence fixes. Des simulations temporelles bidimensionnelles montrent l'apparition d'oscillations à haute fréquence associées au détachement tourbillonnaire en aval du profil à partir de Re = 8000. Une analyse de stabilité hydrodynamique (Floquet) est réalisée pour caractériser la transition vers un écoulement tridimensionnel. Des simulations tridimensionnelles sont ensuite réalisées pour Re = 50000 afin de caractériser l'écoulement instantané et moyenné. L'analyse des forces moyennes exercées sur l'aile à incidence fixe permettent de détecter une rigidité aérodynamique négative (rapport moment-incidence) pour la gamme |alpha| 0°), où des solutions chaotiques et quasi-périodiques coexistent pour les mêmes paramètres structuraux, et évolue vers un scénario où les oscillations se font autour de alpha = 0°. La dernière partie de la thèse essaie d'expliquer la déstabilisation des positions d'équilibre non nulles conduisant à un comportement quasi-périodique à l'aide d'analyses LSA autour des champs moyens et périodiques à incidence fixe. Même si ces analyses sont incapables de prédire un mode propre instable, nous concluons que l'inclusion du terme des contraintes de Reynolds dans la dynamique de perturbation de l'écoulement moyen a un effet important.This thesis investigates aeroelastic instability phenomena arising in coupled fluid–structure interactions, considering the flow around a rigid airfoil mounted on a torsion spring. The focus is on the laminar separation flutter phenomenon, namely a self-sustained pitch oscillation detected experimentally on a NACA0012 airfoil in the transitional Reynolds number regime (Re in [10^4 – 10^5]) at low incidences, characterised by a detachment of an initially laminar boundary layer followed by its transition and subsequent reattachment. The main objective of the thesis is to explain this phenomenon in terms of instability concepts. For this, a combination of numerical approaches involving two- and three-dimensional Navier–Stokes simulations—the latter refereed to as Direct Numerical Simulations (DNS)—along with linear stability analyses (LSA) around a mean flow or a periodic flow (Floquet analysis) is employed. A second objective is to numerically explore the different nonlinear scenarios appearing in the low-to-moderate Reynolds number regime. The first part of the thesis is devoted to the characterisation of the fluid flow around the airfoil considering fixed incidences. Two-dimensional time-marching simulations are first employed, showing the emergence of high-frequency vortex shedding oscillations for Re = 8000. A hydrodynamic stability analysis (Floquet) is then employed to characterise the transition to a three-dimensional flow and DNS is eventually used to characterise both instantaneous and averaged flow quantities at Re = 50000. An analysis of the mean forces exerted on a fixed-incidence wing allows to detect a negative aerodynamic stiffness (torque-to-incidence ratio) in the range |alpha| < 2°, indicating a static instability. The second part of the thesis is devoted to the characterisation of the primary instability of the coupled fluid–structure system using LSA around the mean and periodic flow fields. Considering the symmetrical equilibrium position alpha = 0°, the analysis shows the presence of an unstable static mode, in accordance with the existence of a negative aerodynamic stiffness. In the third part of the thesis, the emergence of self-sustained flutter oscillations is investigated via two-dimensional aeroelastic simulations. The investigation shows that the system first transitions towards a pitch oscillation around the nonsymmetrical equilibrium position (alpha > 0°), with coexistence of chaotic and quasi-periodic solutions for the same structural parameters, and subsequently transitions towards a pitch oscillation around the symmetrical position (alpha = 0°) as the Reynolds number increases. In the last part of the thesis, an attempt is made to explain the destabilisation of the nonsymmetrical equilibrium positions leading to a quasi-periodic behaviour using LSA around the mean and periodic flow fields at fixed incidences. Even if these analyses are unable to predict an unstable eigenmode, we conclude that the inclusion of the Reynolds stress term in the mean flow perturbation dynamics has an important effect

    Physics of Ionic Conduction in Narrow Biological and Artificial Channels

    Get PDF
    The book reprints a set of important scientific papers applying physics and mathematics to address the problem of selective ionic conduction in narrow water-filled channels and pores. It is a long-standing problem, and an extremely important one. Life in all its forms depends on ion channels and, furthermore, the technological applications of artificial ion channels are already widespread and growing rapidly. They include desalination, DNA sequencing, energy harvesting, molecular sensors, fuel cells, batteries, personalised medicine, and drug design. Further applications are to be anticipated.The book will be helpful to researchers and technologists already working in the area, or planning to enter it. It gives detailed descriptions of a diversity of modern approaches, and shows how they can be particularly effective and mutually reinforcing when used together. It not only provides a snapshot of current cutting-edge scientific activity in the area, but also offers indications of how the subject is likely to evolve in the future

    Numerical Methods for Partial Differential Equations

    Get PDF
    These lecture notes are devoted to the numerical solution of partial differential equations (PDEs). PDEs arise in many fields and are extremely important in modeling of technical processes with applications in physics, biology, chemisty, economics, mechanical engineering, and so forth. In these notes, not only classical topics for linear PDEs such as finite differences, finite elements, error estimation, and numerical solution schemes are addressed, but also schemes for nonlinear PDEs and coupled problems up to current state-of-the-art techniques are covered. In the Winter 2020/2021 an International Class with additional funding from DAAD (German Academic Exchange Service) and local funding from the Leibniz University Hannover, has led to additional online materials such as links to youtube videos, which complement these lecture notes. This is the updated and extended Version 2. The first version was published under the DOI: https://doi.org/10.15488/9248
    corecore