855 research outputs found

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    The Complexity of Change

    Full text link
    Many combinatorial problems can be formulated as "Can I transform configuration 1 into configuration 2, if certain transformations only are allowed?". An example of such a question is: given two k-colourings of a graph, can I transform the first k-colouring into the second one, by recolouring one vertex at a time, and always maintaining a proper k-colouring? Another example is: given two solutions of a SAT-instance, can I transform the first solution into the second one, by changing the truth value one variable at a time, and always maintaining a solution of the SAT-instance? Other examples can be found in many classical puzzles, such as the 15-Puzzle and Rubik's Cube. In this survey we shall give an overview of some older and more recent work on this type of problem. The emphasis will be on the computational complexity of the problems: how hard is it to decide if a certain transformation is possible or not?Comment: 28 pages, 6 figure

    A Penrose polynomial for embedded graphs

    Get PDF
    We extend the Penrose polynomial, originally defined only for plane graphs, to graphs embedded in arbitrary surfaces. Considering this Penrose polynomial of embedded graphs leads to new identities and relations for the Penrose polynomial which can not be realized within the class of plane graphs. In particular, by exploiting connections with the transition polynomial and the ribbon group action, we find a deletion-contraction-type relation for the Penrose polynomial. We relate the Penrose polynomial of an orientable checkerboard colourable graph to the circuit partition polynomial of its medial graph and use this to find new combinatorial interpretations of the Penrose polynomial. We also show that the Penrose polynomial of a plane graph G can be expressed as a sum of chromatic polynomials of twisted duals of G. This allows us to obtain a new reformulation of the Four Colour Theorem

    The t-improper chromatic number of random graphs

    Full text link
    We consider the tt-improper chromatic number of the Erd{\H o}s-R{\'e}nyi random graph G(n,p)G(n,p). The t-improper chromatic number χt(G)\chi^t(G) of GG is the smallest number of colours needed in a colouring of the vertices in which each colour class induces a subgraph of maximum degree at most tt. If t=0t = 0, then this is the usual notion of proper colouring. When the edge probability pp is constant, we provide a detailed description of the asymptotic behaviour of χt(G(n,p))\chi^t(G(n,p)) over the range of choices for the growth of t=t(n)t = t(n).Comment: 12 page
    • …
    corecore