3 research outputs found

    On fuzzy uniformities induced by a fuzzy metric space

    Full text link
    [EN] Different types of fuzzy uniformities have been introduced in the literature standing out the notions due to Hutton, Hohle and Lowen. The main purpose of this paper is to study several methods to endow a fuzzy metric space (X, M, *), in the sense of George and Veeramani, with a probabilistic uniformity and with a Hutton [0, 1](-quasi)-uniformity. We will show the functorial behavior of these constructions as well as its relation with respect to Lowen's functors and Katsaras's functors, which establish a relationship between the categories of probabilistic uniformities and Hutton [0, 1](-quasi)-uniformities with the category of classical uniformities respectively. Furthermore, we also study the fuzzy topologies associated with these fuzzy uniformities. (C) 2017 Elsevier B.V. All rights reserved.The first named author acknowledges the support of the grants MTM2015-63608-P (MINECO/FEDER, UE) and IT974-16 (Basque Government).The second named author is supported by the grant MTM2015-64373-P (MINECO/FEDER, UE).Gutierrez Garcia, J.; Rodríguez López, J.; Romaguera Bonilla, S. (2018). On fuzzy uniformities induced by a fuzzy metric space. Fuzzy Sets and Systems. 330:52-78. https://doi.org/10.1016/j.fss.2017.05.001S527833

    Fuzzy Partial Metric Spaces

    Full text link
    "This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of General Systems on 01 Dec 2018, available online: https://doi.org/10.1080/03081079.2018.1552687"[EN] In this paper we provide a concept of fuzzy partial metric space (X, P, ¿) as an extension to fuzzy setting in the sense of Kramosil and Michalek, of the concept of partial metric due to Matthews. This extension has been defined using the residuum operator ¿¿ associated to a continuous t-norm ¿ and without any extra condition on ¿. Similarly, it is defined the stronger concept of GV -fuzzy partial metric (fuzzy partial metric in the sense of George and Veeramani). After defining a concept of open ball in (X, P, ¿), a topology TP on X deduced from P is constructed, and it is showed that (X, TP) is a T0-space.Valentin Gregori acknowledges the support of the Ministry of Economy and Competitiveness of Spain under Grant MTM2015-64373-P (MINECO/Feder, UE). Juan Jose Minana acknowledges the partially support of the Ministry of Economy and Competitiveness of Spain under Grant TIN2016-81731-REDT (LODISCO II) and AEI/FEDER, UE funds, by the Programa Operatiu FEDER 2014-2020 de les Illes Balears, by project ref. PROCOE/4/2017 (Direccio General d'Innovacio i Recerca, Govern de les Illes Balears), and by project ROBINS. The latter has received research funding from the European Union framework under GA 779776. This publication reflects only the authors views and the European Union is not liable for any use that may be made of the information contained therein.Gregori Gregori, V.; Miñana, J.; Miravet-Fortuño, D. (2018). Fuzzy Partial Metric Spaces. International Journal of General Systems. https://doi.org/10.1080/03081079.2018.1552687SBukatin, M., Kopperman, R., & Matthews, S. (2014). Some corollaries of the correspondence between partial metrics and multivalued equalities. Fuzzy Sets and Systems, 256, 57-72. doi:10.1016/j.fss.2013.08.016Camarena, J.-G., Gregori, V., Morillas, S., & Sapena, A. (2010). Two-step fuzzy logic-based method for impulse noise detection in colour images. Pattern Recognition Letters, 31(13), 1842-1849. doi:10.1016/j.patrec.2010.01.008Demirci, M. (2012). The order-theoretic duality and relations between partial metrics and local equalities. Fuzzy Sets and Systems, 192, 45-57. doi:10.1016/j.fss.2011.04.014George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7Grabiec, M. (1988). Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), 385-389. doi:10.1016/0165-0114(88)90064-4Grečova, S., & Morillas, S. (2016). Perceptual similarity between color images using fuzzy metrics. Journal of Visual Communication and Image Representation, 34, 230-235. doi:10.1016/j.jvcir.2015.04.003Gregori, V., Miñana, J.-J., & Morillas, S. (2012). Some questions in fuzzy metric spaces. Fuzzy Sets and Systems, 204, 71-85. doi:10.1016/j.fss.2011.12.008Gregori, V., Morillas, S., & Sapena, A. (2010). On a class of completable fuzzy metric spaces. Fuzzy Sets and Systems, 161(16), 2193-2205. doi:10.1016/j.fss.2010.03.013Gregori, V., & Romaguera, S. (2000). Some properties of fuzzy metric spaces. Fuzzy Sets and Systems, 115(3), 485-489. doi:10.1016/s0165-0114(98)00281-4Gregori, V., & Sapena, A. (2002). On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 125(2), 245-252. doi:10.1016/s0165-0114(00)00088-9Gutiérrez García, J., Rodríguez-López, J., & Romaguera, S. (2018). On fuzzy uniformities induced by a fuzzy metric space. Fuzzy Sets and Systems, 330, 52-78. doi:10.1016/j.fss.2017.05.001Höhle, U., & Klement, E. P. (Eds.). (1995). Non-Classical Logics and their Applications to Fuzzy Subsets. doi:10.1007/978-94-011-0215-5Klement, E. P., Mesiar, R., & Pap, E. (2000). Triangular Norms. Trends in Logic. doi:10.1007/978-94-015-9540-7MATTHEWS, S. G. (1994). Partial Metric Topology. Annals of the New York Academy of Sciences, 728(1 General Topol), 183-197. doi:10.1111/j.1749-6632.1994.tb44144.xMenger, K. (1942). Statistical Metrics. Proceedings of the National Academy of Sciences, 28(12), 535-537. doi:10.1073/pnas.28.12.535Miheţ, D. (2008). Fuzzy -contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159(6), 739-744. doi:10.1016/j.fss.2007.07.006Schweizer, B., & Sklar, A. (1960). Statistical metric spaces. Pacific Journal of Mathematics, 10(1), 313-334. doi:10.2140/pjm.1960.10.313Shukla, S., Gopal, D., & Roldán-López-de-Hierro, A.-F. (2016). Some fixed point theorems in 1-M-complete fuzzy metric-like spaces. International Journal of General Systems, 45(7-8), 815-829. doi:10.1080/03081079.2016.1153084Ying, M. (1991). A new approach for fuzzy topology (I). Fuzzy Sets and Systems, 39(3), 303-321. doi:10.1016/0165-0114(91)90100-5Yue, Y. (2015). Separated ▵+-valued equivalences as probabilistic partial metric spaces. Journal of Intelligent & Fuzzy Systems, 28(6), 2715-2724. doi:10.3233/ifs-15154

    A Duality Relationship Between Fuzzy Partial Metrics and Fuzzy Quasi-Metrics

    Full text link
    [EN] In 1994, Matthews introduced the notion of partial metric and established a duality relationship between partial metrics and quasi-metrics defined on a set X. In this paper, we adapt such a relationship to the fuzzy context, in the sense of George and Veeramani, by establishing a duality relationship between fuzzy quasi-metrics and fuzzy partial metrics on a set X, defined using the residuum operator of a continuous t-norm *. Concretely, we provide a method to construct a fuzzy quasi-metric from a fuzzy partial one. Subsequently, we introduce the notion of fuzzy weighted quasi-metric and obtain a way to construct a fuzzy partial metric from a fuzzy weighted quasi-metric. Such constructions are restricted to the case in which the continuous t-norm * is Archimedean and we show that such a restriction cannot be deleted. Moreover, in both cases, the topology is preserved, i.e., the topology of the fuzzy quasi-metric obtained coincides with the topology of the fuzzy partial metric from which it is constructed and vice versa. Besides, different examples to illustrate the exposed theory are provided, which, in addition, show the consistence of our constructions comparing it with the classical duality relationship.Juan-Jose Minana acknowledges financial support from FEDER/Ministerio de Ciencia, Innovacion y Universidades-Agencia Estatal de Investigacion/Proyecto PGC2018-095709-B-C21, and by Spanish Ministry of Economy and Competitiveness under contract DPI2017-86372-C3-3-R (AEI, FEDER, UE). This work is also partially supported by Programa Operatiu FEDER 2014-2020 de les Illes Balears, by project PROCOE/4/2017 (Direccio General d'Innovacio i Recerca, Govern de les Illes Balears) and by projects ROBINS and BUGWRIGHT2. These two latest projects have received funding from the European Union's Horizon 2020 research and innovation program under grant agreements No 779776 and No 871260, respectively. This publication reflects only the authors views and the European Union is not liable for any use that may be made of the information contained therein.Gregori Gregori, V.; Miñana, J.; Miravet, D. (2020). A Duality Relationship Between Fuzzy Partial Metrics and Fuzzy Quasi-Metrics. Mathematics. 8(9):1-16. https://doi.org/10.3390/math809157511689MATTHEWS, S. G. (1994). Partial Metric Topology. Annals of the New York Academy of Sciences, 728(1 General Topol), 183-197. doi:10.1111/j.1749-6632.1994.tb44144.xGeorge, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7Roldán-López-de-Hierro, A.-F., Karapınar, E., & Manro, S. (2014). Some new fixed point theorems in fuzzy metric spaces. Journal of Intelligent & Fuzzy Systems, 27(5), 2257-2264. doi:10.3233/ifs-141189Gregori, V., & Miñana, J.-J. (2016). On fuzzy ψ -contractive sequences and fixed point theorems. Fuzzy Sets and Systems, 300, 93-101. doi:10.1016/j.fss.2015.12.010Gregori, V., Miñana, J.-J., Morillas, S., & Sapena, A. (2016). Cauchyness and convergence in fuzzy metric spaces. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111(1), 25-37. doi:10.1007/s13398-015-0272-0Gutiérrez García, J., Rodríguez-López, J., & Romaguera, S. (2018). On fuzzy uniformities induced by a fuzzy metric space. Fuzzy Sets and Systems, 330, 52-78. doi:10.1016/j.fss.2017.05.001Beg, I., Gopal, D., Došenović, T., … Rakić, D. (2018). α-type fuzzy H-contractive mappings in fuzzy metric spaces. Fixed Point Theory, 19(2), 463-474. doi:10.24193/fpt-ro.2018.2.37Gregori, V., Miñana, J.-J., & Miravet, D. (2018). Fuzzy partial metric spaces. International Journal of General Systems, 48(3), 260-279. doi:10.1080/03081079.2018.1552687Zheng, D., & Wang, P. (2019). Meir–Keeler theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 370, 120-128. doi:10.1016/j.fss.2018.08.014Romaguera, S., & Tirado, P. (2020). Characterizing Complete Fuzzy Metric Spaces Via Fixed Point Results. Mathematics, 8(2), 273. doi:10.3390/math8020273Wu, X., & Chen, G. (2020). Answering an open question in fuzzy metric spaces. Fuzzy Sets and Systems, 390, 188-191. doi:10.1016/j.fss.2019.12.006Camarena, J.-G., Gregori, V., Morillas, S., & Sapena, A. (2008). Fast detection and removal of impulsive noise using peer groups and fuzzy metrics. Journal of Visual Communication and Image Representation, 19(1), 20-29. doi:10.1016/j.jvcir.2007.04.003Camarena, J.-G., Gregori, V., Morillas, S., & Sapena, A. (2010). Two-step fuzzy logic-based method for impulse noise detection in colour images. Pattern Recognition Letters, 31(13), 1842-1849. doi:10.1016/j.patrec.2010.01.008Gregori, V., Miñana, J.-J., & Morillas, S. (2012). Some questions in fuzzy metric spaces. Fuzzy Sets and Systems, 204, 71-85. doi:10.1016/j.fss.2011.12.008Morillas, S., Gregori, V., Peris-Fajarnés, G., & Latorre, P. (2005). A fast impulsive noise color image filter using fuzzy metrics. Real-Time Imaging, 11(5-6), 417-428. doi:10.1016/j.rti.2005.06.007Gregori, V., & Romaguera, S. (2004). Fuzzy quasi-metric spaces. Applied General Topology, 5(1), 129. doi:10.4995/agt.2004.2001Park, J. H. (2004). Intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals, 22(5), 1039-1046. doi:10.1016/j.chaos.2004.02.051Rodrı́guez-López, J., & Romaguera, S. (2004). The Hausdorff fuzzy metric on compact sets. Fuzzy Sets and Systems, 147(2), 273-283. doi:10.1016/j.fss.2003.09.007Schweizer, B., & Sklar, A. (1960). Statistical metric spaces. Pacific Journal of Mathematics, 10(1), 313-334. doi:10.2140/pjm.1960.10.313Sapena Piera, A. (2001). A contribution to the study of fuzzy metric spaces. Applied General Topology, 2(1), 63. doi:10.4995/agt.2001.3016Miñana, J.-J., & Valero, O. (2020). On Matthews’ Relationship Between Quasi-Metrics and Partial Metrics: An Aggregation Perspective. Results in Mathematics, 75(2). doi:10.1007/s00025-020-1173-xKarapınar, E., Erhan, İ. M., & Öztürk, A. (2013). Fixed point theorems on quasi-partial metric spaces. Mathematical and Computer Modelling, 57(9-10), 2442-2448. doi:10.1016/j.mcm.2012.06.036Künzi, H.-P. A., Pajoohesh, H., & Schellekens, M. P. (2006). Partial quasi-metrics. Theoretical Computer Science, 365(3), 237-246. doi:10.1016/j.tcs.2006.07.05
    corecore