1,850 research outputs found

    A meshless, integration-free, and boundary-only RBF technique

    Get PDF
    Based on the radial basis function (RBF), non-singular general solution and dual reciprocity method (DRM), this paper presents an inherently meshless, integration-free, boundary-only RBF collocation techniques for numerical solution of various partial differential equation systems. The basic ideas behind this methodology are very mathematically simple. In this study, the RBFs are employed to approximate the inhomogeneous terms via the DRM, while non-singular general solution leads to a boundary-only RBF formulation for homogenous solution. The present scheme is named as the boundary knot method (BKM) to differentiate it from the other numerical techniques. In particular, due to the use of nonsingular general solutions rather than singular fundamental solutions, the BKM is different from the method of fundamental solution in that the former does no require the artificial boundary and results in the symmetric system equations under certain conditions. The efficiency and utility of this new technique are validated through a number of typical numerical examples. Completeness concern of the BKM due to the only use of non-singular part of complete fundamental solution is also discussed

    Inverse heat conduction problems by using particular solutions

    Get PDF
    Based on the method of fundamental solutions, we develop in this paper a new computational method to solve two-dimensional transient heat conduction inverse problems. The main idea is to use particular solutions as radial basis functions (PSRBF) for approximation of the solutions to the inverse heat conduction problems. The heat conduction equations are first analyzed in the Laplace transformed domain and the Durbin inversion method is then used to determine the solutions in the time domain. Least-square and singular value decomposition (SVD) techniques are adopted to solve the ill-conditioned linear system of algebraic equations obtained from the proposed PSRBF method. To demonstrate the effectiveness and simplicity of this approach, several numerical examples are given with satisfactory accuracy and stability.Peer reviewe

    Numerical detection of complex singularities in two and three dimensions

    Get PDF
    Singularities often occur in solutions to partial differential equations; important examples include the formation of shock fronts in hyperbolic equations and self-focusing type blow up in nonlinear parabolic equations. Information about formation and structure of singularities can have significant role in interfacial fluid dynamics such as Kelvin-Helmholtz instability, Rayleigh-Taylor instability, and Hele-Shaw flow. In this thesis, we present a new method for the numerical analysis of complex singularities in solutions to partial differential equations. In the method, we analyze the decay of Fourier coefficients using a numerical form fit to ascertain the nature of singularities in two and three-dimensional functions. Our results generalize a well known method for the analysis of singularities in one-dimensional functions to higher dimensions. As an example, we apply this method to analyze the complex singularities for the 2D inviscid Burger\u27s equation
    • …
    corecore