196 research outputs found

    Characterising Probabilistic Processes Logically

    Full text link
    In this paper we work on (bi)simulation semantics of processes that exhibit both nondeterministic and probabilistic behaviour. We propose a probabilistic extension of the modal mu-calculus and show how to derive characteristic formulae for various simulation-like preorders over finite-state processes without divergence. In addition, we show that even without the fixpoint operators this probabilistic mu-calculus can be used to characterise these behavioural relations in the sense that two states are equivalent if and only if they satisfy the same set of formulae.Comment: 18 page

    A Logic for True Concurrency

    Full text link
    We propose a logic for true concurrency whose formulae predicate about events in computations and their causal dependencies. The induced logical equivalence is hereditary history preserving bisimilarity, and fragments of the logic can be identified which correspond to other true concurrent behavioural equivalences in the literature: step, pomset and history preserving bisimilarity. Standard Hennessy-Milner logic, and thus (interleaving) bisimilarity, is also recovered as a fragment. We also propose an extension of the logic with fixpoint operators, thus allowing to describe causal and concurrency properties of infinite computations. We believe that this work contributes to a rational presentation of the true concurrent spectrum and to a deeper understanding of the relations between the involved behavioural equivalences.Comment: 31 pages, a preliminary version appeared in CONCUR 201

    Hennessy-Milner Theorems via Galois Connections

    Get PDF
    We introduce a general and compositional, yet simple, framework that allows to derive soundness and expressiveness results for modal logics characterizing behavioural equivalences or metrics (also known as Hennessy-Milner theorems). It is based on Galois connections between sets of (real-valued) predicates on the one hand and equivalence relations/metrics on the other hand and covers a part of the linear-time-branching-time spectrum, both for the qualitative case (behavioural equivalences) and the quantitative case (behavioural metrics). We derive behaviour functions from a given logic and give a condition, called compatibility, that characterizes under which conditions a logically induced equivalence/metric is induced by a fixpoint equation. In particular, this framework allows to derive a new fixpoint characterization of directed trace metrics

    A tutorial on interactive Markov chains

    Get PDF
    Interactive Markov chains (IMCs) constitute a powerful sto- chastic model that extends both continuous-time Markov chains and labelled transition systems. IMCs enable a wide range of modelling and analysis techniques and serve as a semantic model for many industrial and scientific formalisms, such as AADL, GSPNs and many more. Applications cover various engineering contexts ranging from industrial system-on-chip manufacturing to satellite designs. We present a survey of the state-of-the-art in modelling and analysis of IMCs.\ud We cover a set of techniques that can be utilised for compositional modelling, state space generation and reduction, and model checking. The significance of the presented material and corresponding tools is highlighted through multiple case studies

    A Logic with Reverse Modalities for History-preserving Bisimulations

    Full text link
    We introduce event identifier logic (EIL) which extends Hennessy-Milner logic by the addition of (1) reverse as well as forward modalities, and (2) identifiers to keep track of events. We show that this logic corresponds to hereditary history-preserving (HH) bisimulation equivalence within a particular true-concurrency model, namely stable configuration structures. We furthermore show how natural sublogics of EIL correspond to coarser equivalences. In particular we provide logical characterisations of weak history-preserving (WH) and history-preserving (H) bisimulation. Logics corresponding to HH and H bisimulation have been given previously, but not to WH bisimulation (when autoconcurrency is allowed), as far as we are aware. We also present characteristic formulas which characterise individual structures with respect to history-preserving equivalences.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407

    (Metric) Bisimulation Games and Real-Valued Modal Logics for Coalgebras

    Get PDF
    Behavioural equivalences can be characterized via bisimulations, modal logics and spoiler-defender games. In this paper we review these three perspectives in a coalgebraic setting, which allows us to generalize from the particular branching type of a transition system. We are interested in qualitative notions (classical bisimulation) as well as quantitative notions (bisimulation metrics). Our first contribution is to introduce a spoiler-defender bisimulation game for coalgebras in the classical case. Second, we introduce such games for the metric case and furthermore define a real-valued modal coalgebraic logic, from which we can derive the strategy of the spoiler. For this logic we show a quantitative version of the Hennessy-Milner theorem

    Retracing some paths in categorical semantics: From process-propositions-as-types to categorified reals and computers

    Full text link
    The logical parallelism of propositional connectives and type constructors extends beyond the static realm of predicates, to the dynamic realm of processes. Understanding the logical parallelism of process propositions and dynamic types was one of the central problems of the semantics of computation, albeit not always clear or explicit. It sprung into clarity through the early work of Samson Abramsky, where the central ideas of denotational semantics and process calculus were brought together and analyzed by categorical tools, e.g. in the structure of interaction categories. While some logical structures borne of dynamics of computation immediately started to emerge, others had to wait, be it because the underlying logical principles (mainly those arising from coinduction) were not yet sufficiently well-understood, or simply because the research community was more interested in other semantical tasks. Looking back, it seems that the process logic uncovered by those early semantical efforts might still be starting to emerge and that the vast field of results that have been obtained in the meantime might be a valley on a tip of an iceberg. In the present paper, I try to provide a logical overview of the gamut of interaction categories and to distinguish those that model computation from those that capture processes in general. The main coinductive constructions turn out to be of this latter kind, as illustrated towards the end of the paper by a compact category of all real numbers as processes, computable and uncomputable, with polarized bisimulations as morphisms. The addition of the reals arises as the biproduct, real vector spaces are the enriched bicompletions, and linear algebra arises from the enriched kan extensions. At the final step, I sketch a structure that characterizes the computable fragment of categorical semantics.Comment: 63 pages, 40 figures; cut two words from the title, tried to improve (without lengthening) Sec.8; rewrote a proof in the Appendi

    On bisimulation and model-checking for concurrent systems with partial order semantics

    Get PDF
    EP/G012962/1In concurrency theory—the branch of (theoretical) computer science that studies the logical and mathematical foundations of parallel computation—there are two main formal ways of modelling the behaviour of systems where multiple actions or events can happen independently and at the same time: either with interleaving or with partial order semantics. On the one hand, the interleaving semantics approach proposes to reduce concurrency to the nondeterministic, sequential computation of the events the system can perform independently. On the other hand, partial order semantics represent concurrency explicitly by means of an independence relation on the set of events that the system can execute in parallel; following this approach, the so-called ‘true concurrency’ approach, independence or concurrency is a primitive notion rather than a derived concept as in the interleaving framework. Using interleaving or partial order semantics is, however, more than a matter of taste. In fact, choosing one kind of semantics over the other can have important implications—both from theoretical and practical viewpoints—as making such a choice can raise different issues, some of which we investigate here. More specifically, this thesis studies concurrent systems with partial order semantics and focuses on their bisimulation and model-checking problems; the theories and techniques herein apply, in a uniform way, to different classes of Petri nets, event structures, and transition system with independence (TSI) models. Some results of this work are: a number of mu-calculi (in this case, fixpoint extensions of modal logic) that, in certain classes of systems, induce exactly the same identifications as some of the standard bisimulation equivalences used in concurrency. Secondly, the introduction of (infinite) higher-order logic games for bisimulation and for model-checking, where the players of the games are given (local) monadic second-order power on the sets of elements they are allowed to play. And, finally, the formalization of a new order-theoretic concurrent game model that provides a uniform approach to bisimulation and model-checking and bridges some mathematical concepts in order theory with the more operational world of games. In particular, we show that in all cases the logic games for bisimulation and model-checking developed in this thesis are sound and complete, and therefore, also determined—even when considering models of infinite state systems; moreover, these logic games are decidable in the finite case and underpin novel decision procedures for systems verification. Since the mu-calculi and (infinite) logic games studied here generalise well-known fixpoint modal logics as well as game-theoretic decision procedures for analysing concurrent systems with interleaving semantics, this thesis provides some of the groundwork for the design of a logic-based, game-theoretic framework for studying, in a uniform manner, several concurrent systems regardless of whether they have an interleaving or a partial order semantics

    Combining linear time temporal logic descriptions of concurrent computations

    Get PDF
    • …
    corecore