

Combining linear time temporal logic descriptions of
concurrent computations
Citation for published version (APA):
Kuiper, R. (1989). Combining linear time temporal logic descriptions of concurrent computations. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR311554

DOI:
10.6100/IR311554

Document status and date:
Published: 01/01/1989

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR311554
https://doi.org/10.6100/IR311554
https://research.tue.nl/en/publications/a16243a8-201d-4c00-ba93-cc7ca99339cb

OMBINING LINEAR TIME TEMPORAL LOGIC

DESCRIPTIONS OF

CONCURRENT COMPUTATIONS

Ruurd Kuiper

Combining linear time temporal logic descriptions

of concurrent computations

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,

op gezag van de Rector Magnificus, prof. ir. M. Tels,
voor een commissie aangewezen door het College van Dekanen

in het openbaar te verdedigen op
vrijdag 26 mei 1989 te 14 .00 uur

door

RUURD KUIPER

geboren te Amsterdam

Dit proefschrift is goedgekeurd

door de promotoren

prof. dr. Willem-Paul de Roever

en

prof. dr. Howard Barringer.

ACKNOWLEDGEMENTS

I wish to express my gratitude to the University of Manchester and Eindhoven Univer
sity of Technology for providing the opportunity and environment to write this thesis.

Most of all I thank Willem-Paul de Roever who was the continuingly inspiring, guiding
and helpful force throughout the writing of this thesis and, furthermore, the one who
introduced me to temporal logic.

I am also very grateful to my co-authors. I wish to express special gratitude to Howard
Barringer and Amir PnueU. They both generously shared their knowledge with me and
were an ever stimulating factor in our joint research. Ron Koymans and Erik Zijlstra I
thank for their perseverance with regard to Chapter 1. As my office mate, Ron deserves
extra thanks for his help during the final stages of writing.

I thank Cliff Jones for the many suggestions he made and the help he provided du
ring my stay in Manchester. I also wish to acknowledge the stimulus provided by the
TEMPLE group in Manchester and Tobias Nipkow. Similar thanks for the period
thereafter go to the members of the Sectie Theoretische Informatica at Eindhoven Uni
versity of Technology.

Many thanks go to Carol Weintraub, Edme van Thiel and Anita Klooster for typing
the various parts of this thesis-often under time pressure.

I am most happy to thank Annette and my parents for their continuous support and
patience during the writing of this thesis.

CONTENTS

Introduction

Specification Specified, 2
R. Koymans, R. Kuiper, E. Zijlstra.

Now You May Compose Temporal Logic Specifications, 53
H. Barringer, R. Kuiper, A. Pnueli,
Proc. of the 16th ACM Symposium on the Theory of Computing,
pp . 51-63, 1984 .

A Compositional Temporal Approach to a CSP-like Language, 83
H. Barringer, R. Kuiper , A. Pnueli,
Formal Models in Programming, North-Holland, pp. 207-227, 1985.

A Really Abstract Concurrent Model and its Temporal Logic, 105
H. Barringer, R. Kuiper, A. Pnueli,
Proc. of the 13th ACM Symposium on Principles of Programming Languages,
pp . 173-183, 1986.

Enforcing Nondeterminism via Linear Time Temporal Logic
Specifications using Hiding, 129
R. Kuiper,
Proc. of the Colloquium on Temporal Logic and Specification,
Altrincham, 1987. To appear in LNCS, Springer, 1989.

Samenvatting 141

Curriculum vitae 145

1

INTRODUCTION

This thesis consists of five chapters in the form of papers, the first one still to be sub
mitted. The last four consider different but related problems in the area of combining
linear time temporal logic descriptions of concurrent computations. During the writing
of this series of four papers and while studying other literature published during this
period, the underlying questions became more clear to us-prompting the writing of
a separate paper. Hence the first paper was written last; the others are presented in
chronological order. Although later ones make use of insights obtained in previous ones,
the papers are still relatively self contained.

Attempts at formulating the questions showed that some of them were only clear in
an intuitive sense- if at all. We therefore made an attempt at clarifying and , in part,
formalising the notions involved . Sometimes this proved to be trivial and sometimes
surprisingly difficult.

The first paper records our investigations in that direction thus far. We feel that we
have reached a point where most of the aims and questions that concern the other
papers are reasonably clear. We are well aware though, that from a broader point of
view a lot is still left to be done.

In the first paper we start by presenting an overview of notions about formalisms to
describe computations. After having done so we introduce the four papers and discuss
the relationships between them and also with respect to some other research in the
same area.

The notions themselves are evaluated in a formal manner. We feel that thereafter their
meaning should be sufficiently clear to discuss the papers in a more loose way. This
seems to us more useful as an introduction to the papers than a formal treatment. Such
a formal treatment might, in fact, only be appreciated after reading the papers. Also,
the purpose of the formalisation was clarification rather than advocating formality for
its own sake.

Thus, the real introduction to this thesis is the first paper.

SPECIFICATION SPECIFIED

Ron Koymans, Ruurd Kuiper,

Department of Computing Science,
Eindhoven University of Technology,
P~O. Box 513, 560() MB Eindhoven~
The Netherlands
Email: wsdcronkheitue5.bitnet or mcvax!eutrc3!wsinronk.uucp,

mcvax!eutrc3!wsinruur.uucp .

Erik Zijlstra,

Foxboro Nederland NV,
Koningsweg 30, 3762 EC Soest,
The Netherlands

ABSTRACT

2

Driven by the problem of how to motivate and compare several temporal logic based
specification formalisms, [BKP84, 85, 86], (Ku87] and [La83a, 85], (AL88], we evaluate
notions that describe properties of such formalisms in a systematic manner. It turns
out, that some properties are difficult to formalise, like the intuitive feasibility of the
representation of executions-in such cases we at least attempt to give some structure
to their evaluation. Of the more readily formalisable ones in particular compositiona
lity and modularity are discussed. Their domain of definition is extended to show the
link between their use in different domains. Reactive systems and bias freedom are also
addressed.

1. INTRODUCTION

Many different formalisms to describe systems and their behaviour are available no
wadays, varying greatly in their expressive power as well as in the manner in which
information is represented . There is a corresponding diversity in the ways in which
such formalisms are evaluated. This is unfortunate, as it makes it difficult to compare
the merits of different formalisms.

It even appears from the literature that particular evaluations are often given in terms
specific to the formalism under consideration. An example is compositionality, a notion
that after its introduction in the area of semantics went through a long history of
more or less intuitive or limited definitions in the area of specifications (cf. (La83a,

The authors are currently working in and partially supported by ESPRIT project P937:

"Debugging and Specification of Ada Real- Time Embedded Systems (DESCARTES)".

The second author also acknowledges support under the Alvey /SERC grant

GR/D/57492.

3

ZBR83, BKP84, La85, dR85, Sta85, HR86, NDG086]) before regaining respectability
in Zwiers's thesis [Zw88].

In this paper we take a step back from concrete formalisms and reconsider the aims
and properties of such formalisms from a more abstract point of view. It appears, that
properties of formalisms can be divided in two types, one more intuitive, the other more
formal. We therefore address two questions, of rather different nature.

Firstly, how can it be assessed how well a formalism represents reality? We interpret
this question in a broad sense. For example, not only the precision but also the ease
by which a representation can be given matters. This is an intuitive, not readily
formalisable judgement. However, the relationship to reality can, in our opinion, be
assessed mote systematically and explicitly than is usually done.

The idea is to split the assessment of the representation of reality into the assessment of
the subrepresentations of a collection of aspects we consider important. These aspects
can be identified in a both more explicit as well as more abstract way than by choosing a
particular model of representation. Examples are the representation of observation or of
execution. The intuitive correctness of subrepresentations can usually be argued more
clearly and, more importantly, enables better comparisons between different formalisms
than when the representation as a whole is considered. An example is the assessment
of the different ways stuttering is treated, like for instance in (La85, BKP86]. This is
the content of Section 2.

Secondly, how can a collection of formal notions that describe properties of formalisms
be obtained and defined in a general manner? The approach we take is to structure the
generation of this collection . As will be explained in greater detail later, this roughly
means identifying a few basic concepts and instantiating and refining these in different
areas and at different levels of abstraction. This approach led to some new insight into
expressiveness but, more importantly, to a better understanding of compositionality
and modularity. This is carried out in Section 3.

It turns out that, as a bonus, the approach guides us in defining the concepts of reactive
system, introduced in [HP85], and bias freedom, as used in [Jo86], in some more detail
and generality than is usually done. As results from Section 2 as well as 3 are used,
this is described in a separate section, 4.

The investigation of the two questions mentioned originated from attempts to under
stand better the motivations for the design of the temporal logic based formalisms
presented in [BKP84, 85, 86] and [Ku87]. In Section 5 we therefore evaluate and com·
pare these formalisms . The relation to work by Lamport ([La83a, 83b, 85, 89], [AL88])
is investigated. Some remarks are made about the approach by Nguyen et al [NDG086]
and a proof method by Stark ([Sta85]).

Although the paper is quite formal up to Section 5, we feel that our aim was clarification
and not formalisation for its own sake. Section 5 is foremost intended as an introduction
to [BKP84, 85, 86] and [Ku87]. Hence, we use the insights obtained by the formal
approach in a much less formal manner there.

Each section has its own introduction where further division into subsections is provi
ded .

4

2. JUSTIFICATION OF FORMALISATION WITH RESPECT TO THE
INTUITION

Perhaps the most basic question concerning the justification of a formalism is how the
description is related to reality. Hence the, rather elusive, aim in this section is to
justify formal objects against intuitions.

The aim is nots.o much to find "the best" . representation, but ratlier to better under
stand where and why formalisms differ.

By formalism we mean a symbolism that describes certain aspects of objects. In its
full generality, this only requires some relation between objects and such aspects. It
is tempting to choose a function as this relation. However, considering a specification
formalism we see that such a choice is too narrow . One object can satisfy, i.e. be
related to, several specifications and vice versa.

A concrete specification structure models certain aspects of reality in a specific manner.
What these aspects are and how well specifications describe them depends on the
intuitive structure of the objects, the formal structure of the specifications and the
formal satisfaction relation between objects and specifications. The choice of these
aspects in itself is a decision that belongs to a higher level than the actual modeUing.

The idea now is simply to provide a list of intuitive aspects that are, at least in our opi
nion, relevant. To justify a particular modelling one then needs to justify the modelling
of these aspects.

For example, one could model behaviour, especially concerning external choices, in
different ways. One possibility is, to use a tree of states giving values to observable
variables. Alternatively, one might choose the representation by sets of sequences of
states together with failure sets ([Ho85)). As this will generally result in a different
level of abstraction of modelling choices, the satisfaction relations between objects and
specifications will also differ.

Such choices should be justified. In the example, it is already clear that useful aspects
to consider might be observations and executions.

We structure this evaluation a little. As the most general formalism in this paper we
use a specification structure. The word "structure" rather than "language" is chosen
to emphasize that we.take an abstract view, not, for example, focussing on features of
the language in which specifications are written. Moreover, the justification process we
describe is independent of the languages used to denote objects or specifications.

Definition 2.1.
An object structure 0 is a set of objects.
0,01,02,··· are variables ranging over 0 .

Definition 2.2 .
A specification structure < S, SAT> for an object structure 0 consists of

(i) a set S of specifications together with
(ii) a relation SAT ~ 0 X S.

5

s, sl' s2, ... are variables ranging over s.
0 SAT S intuitively means that Sis an aspect of object 0.

We justify a formalism via splitting the problem of justification into several subpro
blems. This seemingly obvious approach will, in Section 5, be seen to allow some
insights into the relative merits of different models that are hard to discuss directly.
It will be carried out for program specification formalisms and hence also for program
semantics-the latter being a special case of the former.

The split we suggest is the following.

Definition 2.3.
The intuitive justification of a specification structure < S, SAT > for an object structure
0 requires:

I.(a) A formalisation of (momentary) observation, s E s;
I.(b) a formalisation of execution, a E a;
I.(c) a formalisation of specification, S E S;

II. a formalisation of the relation SAT between object and specification;

formal operators

III.(a) Pa: S-+P(a)and
III.(b) Ps: a-+P(s)

that extract, respectively, a set of executions from a specification and a set of observa
tions from an execution.

The justification consists of justifying the above six aspects of the formalisation.

Remarks.

1. The formalisation of specification is of course already given with the specification
structure. We list it again, to emphasize that it is one of the choices to be justified,
but not the only one. Its justification should now be limited to the aspects not
addressed separately already.

For example, in the comparison of a tree based model with a failure set model it
should be clear that, abstractness considerations left aside, the former is better than
the latter on all points listed-for instance, choice is modelled via structure rather
than by extending observations to include a representation of all failed attempts
at communication. The failure set model, however, is a lot easier to manipulate
mathematically than the tree based one.

2. The justification, although comparing intuition and formalisation, is not limited in
its arguments to this area. For instance, ease of mathematical manipulation of the
specifications may be an important consideration.

Also, although the justification is with respect to the intuition, this does not mean
that in this justification no formal properties may be used. For example, the fact

6

that a formalisation is fully abstract, a notion to be discussed in Section 3, may be
an argument in the justification of I.(c).

Later, in Subsection 3.3 and even more so in Section 4, we shall discuss object structures
that have more structure, reflecting syntactic structure of programming languages. This.
leads to further requirements that one might want to impose on a specifi~~tion structure
that describes these objects, like compositionality or modularity. The extra structure
can be used to give extra arguments in the justification. However, the link between the
formalism and reality can, in our opinion, still be justified as before.

There are no a priori requirements about the actual modelling of the aspects listed in
the definition as applied to specification structures. A semantics for programs can be
viewed as a special case of a specification structure. The extra requirement-and this
is an a priori requirement-is then that the SAT relation is functional. To keep the
terminology consistent, a semantics is called a behaviour structure .

Definition 2.4 .
A behaviour structure < B, BEH > for an object structure 0 consists of

(i) a set B of behaviours together with
(ii) a functional relation BEH ~ 0 X B.

B,B1,B2 , •. • are variables ranging over B.

Proposition 2.1.
A behaviour structure is a specification structure for which the SAT relation is functio
nal.

Remark.
As BEH is a functional relation, 0 BEH B could be denoted as BEH(O) = B, or even
using semantics brackets instead of BEH . However, the comparison with specification
structures would then be less clear. As it is just this comparison that is one of our
concerns, we use the more general notation while leaving it to the reader to perform
the, straightforward, translation where necessary to help the understanding.

Proposition 2.2.
Viewed as a function, BEH induces an equivalence relation on 0 via 0 1 ~ B 0 2 iff
BEH (OI) = BEH(02).

It might be argued that one could limit justification with respect to the intuition
to behaviour structures for programming languages. A specification structure should
then be given in terms of the already justified behaviour structure rendering further
justification superfluous. As we wish to allow specifications to describe behaviour di
rectly rather than only as generated by programs, we considered the general case of
specification structures. This is, for example, necessary to give a semantics to mixed
specification and program terms.

Throughout the paper, standard names for variables, constructors, etc. are used to

7

indicate their domains; where no confusion is likely to arise, explicit mention of these
domains is mostly omitted. Also, when SandS', orB and B', are used, their obvious
connection with SAT and SAT', respectively BEH and BEH', is often left implicit . Similar
holds for other information that is obvious from the context, for example the fact that
all specification and behaviour structures apply to the object structure 0.

Example.

1. Consider a behaviour structure that takes classes of intuitively equivalent programs
as its behaviours . This is a very general model; every semantics can be represented
in this way. However, this is also a very non- intuitive way of representing behaviour:
what would an observation or execution be in this representation? Indeed, points
I.(a), (b), II and III can hardly be argued satisfactorily. The justification has to be
given completely at point I.(c), where it has to be argued directly that the division
in equivalence classes corresponds to the intuition.

2. Equally unsatisfactory as in Example 1 is, in the case of specification structures,
taking programs themselves as specifications. The problem now is the justification
of II, as SAT has to be defined in such a manner, that intuitively equivalent programs
satisfy the same specifications.

3. Consider the readiness behaviour structure for, for instance, communicating se
quential processes with synchronised communication, CSP-programs [Ho85]. The
behaviour of a program is the set of all prefixes of sequences of successful commu
nications with a readiness set attached . A readiness set is a set of communications
all of which the program can engage in at that point of the sequence. Note that a
prefix plus readiness set is included if it can occur rather than always does occur:
if identical prefixes can lead to different readiness sets, both will be included in the
behaviour .

Difficulties arise when defining executions. If just complete communication sequen
ces are taken as executions, the relation to behaviour, as mentioned in III.(a), is
rather unsatisfactorily, as the readiness sets are not explained. Some may be content
to regard complete sequences of communications plus all intermediate readiness sets
as executions. However, the readiness sets are then still hard to reconcile with an
intuitive notion of observation, the requirement in III.(b).

4. Similar problems arise when failure sets [Ho85] or saturated readiness sets [He88]
are used: the extra abstractness obtained can be used to justify the extensions of
the sets involved, but not their presence as such .

8

3. FORMAL PROPERTIES OF DESCRIPTIVE SYSTEMS

The aim in this section is to arrive at a reasonably complete collection of formal notions
concerning expressiveness and the way component descriptions are combined as well as
to provide definition for these in a general manner. We restrict ourselves to notions
that admit straightforward formal definitions . An example of a, quite useful, property
that falls outsld£.our_scop_e_j s:

"Similar systems have similar specifications ."

In Subsection 3.1 the approach to arrive at the desired collection is outlined. In Subsec
tions 3 .2 and 3.3 the notions are introduced . In Subsection 3.4 this rather theoretical
approach is, briefly, linked to existing formalisms.

It appears that all notions discussed in this section can be defined at a level of abstract
ness that makes the definitions independent of the choice of both basic behaviours and
SAT.

Taking this systematic approach, we unavoidably run into quite some trivial and well
known notions and relationships between these. As we also encounter quite complicated
ones eventually and as it is difficult to decide where to start other than at the beginning,
we have chosen to include these . They should perhaps be viewed as an introduction
to the approach rather than for their own merit. Also, we have chosen to gently intro
duce results via many evident propositions rather than proving a few more difficult ones .

3.1. The approach

To structure the inventarisation of the rather overwhelming variety of notions we emp
loy two tactics .

The first tactic

This tactic derives from the observation that in the literature one often encounters
notions that have the same or similar names while occurring in different areas. For
example, compositionality is used for semantics, specifications and proof systems. This
suggest the existence of more general concepts underlying such notions . In the sequel
we distinguish between the use of the terms notion and concept. A notion is a formally
defined instanti ation in some area of a, usually more intuitive, concept .

This provides th e first tactic, namely to consider two features of notions:

(i) the concept that the notion instantiates;
(ii) the area to which the notion applies .

As one would expect, not all concepts can be meaningfully instantiated in all areas .
Furthermore, some concepts give rise to several different notions occurring in the same
area.

An example is the concept of abstractness . This concept occurs in the area of behaviour
structures as well as the area of specification structures but not, at least not directly,

9

in connection with proof systems. Also, in the area of specifications several different
notions of abstractness will be seen to apply.

Evaluating the combinations of entries along axes (i) and (ii), mentioned above, and
also comparing the further differentiations that are sometimes made for these combina
tions (as will be seen, again abstractness is an example) aids agains overlooking useful
notions. Conversely, the obligation to consciously choose and motivate all entries along
the axes somewhat helps to introduce only necessary ones.

The entries along the axes are:

Concepts

Areas

Abstractness, expressiveness, compositionality, modularity, soundness,
completeness, bias freedom, reactivity.

Comparison of
two specifications,
a specification and a specification structure,
two specification structures,

similar for behaviours;

assessment of
a specification structure,
a behaviour structure,
a proof system,
a specification language.

It may seem surprising that the concepts expressiveness and abstractness are both in
cluded explicitly, as they occur sometimes as dual notions. However, it appears that
this duality is not always direct and also that in some cases only one of the two is
relevant . Therefore we always investigate both notions and wish to be able to choose
either one as primary when introducing them.

The second tactic

This tactic is based on the observation that there exists a link between the level of
abstraction at which a descriptive framework is given and the possibility to define
notions pertaining to that formalism. For example, the level of abstraction at which
the object structure is defined in Section 2 does not enable discussing compositionality.

Contrasting examples, treated in this paper, are abstractness and bias freedom. The
former can be discussed in a quite unstructured setting, whereas the latter requires a
formalism to possess notions of internal (state) configuration as well as observation.

We exploit this fact to structure the introduction of the notions and, more importantly,
to clarify for each notion what features of formalisms are parameters of it. In order to
maintain comparability of notions used in the evaluation of different formalisms such
parameterisation should be minimalised and where unavoidable be made explicit.

10

For some structures in formalisms , for example specification structures, we give different
definitions at different levels of abstraction . For example , structure may or may not be
considered. This may be justified by the observation that the difference consist only
in adding extra structure where required for the definition of more intricate notions.
Furthermore, definitions are upward compatible in the sense that if a structure satisfies
a detailed definition at a lower level, we shall take care that it also satisfies the more
abstract versi·on at- a-higher level. -- - ·-- -- - - · - -··-- ·-·-

In our opinion , it is better to simply omit structure at higher levels of abstraction
rather than not make use of it. This is especially so when one is interested in the
question whether notions that are defined for different formalisms are comparable. The
definitions should then be given in terms that use as little as possible of the structure of
the formalisms. Compositionality is a case in point of a notion that has been defined in
many different ways in terms specific to particular formalisms, although a more abstract
definition is perfectlfy well possible. Of course, a reader troubled by this approach may
substitute the most detailed definition of a structure for all occurrences.

As a running example a very simple set theory based model is used to exemplify the
various notions on. This model will be developed through different versions to show
the relationship between definability of notions and the amount of structure present
in the model. The purpose of the example is to clarify the meaning of the notions
and to show how little structure is necessary to define them, not to give an intuitively
justifiable representation of reality in the sense of Section 2.

3.2. Level !;__Unstructured objects

We start out by introducing the most abstract framework: Level 1. Then the notions
that can be formulated in this framework are defined. Examples belonging to this level
of abstractness are provided throughout the exposition.

3.2.1. The framework

In order to discuss formalisms, an indispensable prerequisite is to have something to
describe. For this we use the object structure as defined in Section 2. This represents
the most abstract level-no structure is assumed of either the objects or the domain
they belong to.

Intuitively, objects can be thought of as black boxes, off-the-shelf components, pro
grams, etc .-even behaviours would qualify as objects if so desired . This last possibi
lity covers the case of a general specification structure where the intent is to directly
describe behaviours.

Firstly, we take the specification view and start from the observation that objects have
properties. There is, of course, no reason why some objects should not possess several
or, alternatively, no properties . This leads to also adopting at this level the definition
of specification structure as provided in Section 2.

Running example

Given as object structure some set of objects 0, a property can be represented as just

11

the subset S of 0 of all objects that possess that property. A specification structure
then consists of

(i) a set S of subsets of 0 together with
(ii) the satisfaction relation "is element of", E, ~ 0 X S.

In the sequel, examples refer to the running example unless otherwise stated.

The running example can not only be viewed as a way to exemplify notions but also as
a standard way to give a uniform representation of different structures, thus enabling
comparison. Any specification can be represented by the subset of objects that satisfy
it; the satisfaction relation is then represented by E.

Secondly, rather than arbitrary properties, objects have behaviour. Again, at this level
the definition of object structure from Section 2 is the appropriate one.

To avoid confusion, we mention the following rather subtle distinction. A specification
structure relates, in a general way, properties to objects. These objects might be chosen
to be behaviours, in which case properties of behaviours are specified. Alternatively,
as for behaviour structures, one might choose behaviours as special properties. A be
haviour structure thus relates behaviour to objects; it does not relate properties to
behaviours.

Running example.
The special property "behaviour" of an object 0 can again be represented as just the
subset B of 0 of all objects that have that behaviour. A behaviour structure then
consists of

(i) a partitioning B of 0 into subsets together with
(ii) the relation E on 0 x B.

The fact that B is a partitioning ensures that E is a functional relation on 0 x B .

3.2.2. The notions

In the present, unstructured, framework the following entries along the axes can be
discussed.

Concepts

Areas

Abstractness, expressiveness, soundness, completeness .

Comparison of
two specifications,
a specification and a specification structure,
two specification structures,

similar for behaviours;

12

assessment of
a proof system.

When trying to find intuitively appealing notions we have always had the set theoretic
setting of the running example in mind. We urge the reader to use the examples to
judge the validity of o~ h~p::' t~at the_notio_ns are ?ensibly defin.ed .

3.2 .2.1. Abstractness and expressiveness

In this subsection, we go from the general to the particular in that we first give notions
concerning specification structures and then apply these notions to the progressively
more restricted comparisons of a specification and a behaviour structure respectively
two behaviour structures. Some of the notions will be seen to coincide in the last case.

Specification structures

We start the investigation of comparisons by comparing single specifications , possibly
from different specification structures. Intuitively, one specification is more abstract
than another if it is in some sense less precise. At the present level, where objects have
no structure and specifications just characterise sets of objects via SAT, this can only
mean that more objects satisfy that specification than satisfy the other one. Using
the same intuition to define expressiveness renders a notion that is the direct dual of
abstractness.

Definition 3.1.
For specification structures < S, SAT > and < S', SAT' > for a,
a specification S E S is abstract with respect to a specification S' E S' if
for all objects 0 E 0, if 0 SAT'S' then 0 SAT S .

S E S is expressive with respect to S' E S' if
for all 0 E a, if 0 SAT S then 0 SAT1 S'.

Running example.
S E Sis abstract with respect to S' E S' iff S' ~ S .

S E Sis expressive with respect to S' E 5' iff S ~ S'.

Proposition 3.1.
S is expressive with respect to S' iff
S' is abstract with respect to S .

Definition 3.2.
S from< S,SAT >is equivalent to S' from< S',sAT' >with respect to a, S ~a S',
if
for all 0 E a, 0 SAT S iff 0 SAT'S'.

This can be viewed as stating that S and S' do not differ on a.
Note, that because of the dependency of ~a on the SAT and SAT' relations, if S = S'
it does not necessarily hold that S ~a S' (or the other way around).

13

Another, similar, notion, although perhaps not quite belonging to the area of compa
risons of single specifications, is that two objects are equivalent if they are not different
as far as a specification structure can distinguish.

Definition 3.3.
0 1 is equivalent to 02 with respect to< S,SAT >, 0 1 ~s 02, if
for all S E S, (01 SATS iff 02 SAT S).

Running example.
s1 ~a s2 iff s1 = s2.
01 ~ s 02 iff for all S E S, { 01, 02} ~ S or { 01, 02} n S = 0.

Proposition 3.2.
S ~a S' iff Sis both expressive and abstract with respect to S'.

Remarks.

1. The reduction of equivalence to equality as in the case of the canonical example does
not hold in general. The reason is that the SAT relation may blurr the difference
between some specifications.

2. In itself, using "E" as satisfaction relation does not guarantee either that equivalence
implies equality. The reason it does in the case of the running example is that the
sets used as specifications only have objects as elements.

Let < S , SAT > again be as in the canonical example. Now let the relation SAT
remain the same, i.e. E, but extend the set of specifications S to S' as follows. Let
S E S. Let E be a new element, not an object, i.e., E rf_ a . Extend the set S of
specifications with SE = S U {E} to S'. Then for< S',SAT >, S ~ SE but not
S = SE any more.

Note, that strictly speaking it is still the satisfaction relation that blurrs the dif
ference between S and SE-but not so much because of the nature of the relation
but because of the lack of objects to distinguish between specifications, i.e., be
cause of a property of the domain of the relation. The next proposition records this
observation.

Proposition 3.3.
(S ~a S' implies S = S') iff
(if S f- S' then there is an 0 E a such that
either 0 SAT S but not 0 SAT'S' or 0 SAT'S' but not 0 SAT S).

The next step is to compare different specification structures. It appears that ex
pressiveness and abstractness are far less clear concepts in this area; consequently,
there exists quite a number of different notions. The differences stem mainly from dif
ferent choices as to what should be compared: individual specifications or specification
structures as a whole.

Rather than attempting to collect the many different notions that appear in the li
terature, we try to clarify the situation by reiterating the purpose of a specification

14

structure: characterising properties, i.e. groups of objects. It is therefore the ability
with which this can be done that determines the expressive power of a specification
structure.

To emphasize the care needed to avoid choosing undesirable notions we consider two
choices that, in our opinion, seem reasonable but are not.

1. The most straightforward approach would seem to use the comparisons between
single specifications that have just been given.

< S, SAT > is abstract with respect to < S', SAT' > if
for all 0 E 0, S' E S' there is S E S such that
0 SAT Sand Sis abstract with respect to S'.

This requirement, however, would be fulfilled as soon as S contains a specification
that every object satisfies and therefore hardly imposes any restriction. Moreover,
even if that possibility were avoided, the running example shows that any set of
supersets would suffice.

2. Another useful option, most easily formulated for expressiveness, would seem to be
to require that a formalism is expressive with respect to another one if it enables
separating at least as many objects.

< S, SAT > is expressive with respect to < S', SAT' > if
for all 0 1,02 E 0,
if 01 ~5 02
then Ot ~5• 02.

This requirement, however, is fulfilled in the setting of the running example if S'
is taken to consist of all subsets of 0 and S to consist of only the subsets of form
0\{0}, for all 0 E 0 . Intuitively however, S does not seem as expressive asS' at
all .

We discuss two, in our opinion quite natural, alternative options.

Option 1.

We start with an intermediate step . We assess the expressive power of one specification
with respect to a specification structure.

One intuition is that a specification is abstract with respect to a specification structure
if it describes a property that abstracts away from some feature that the structure dis
tinguishes. A perhaps intuitively easier way to view this is to assume that possessing
a property is equivalent to possessing several subproperties. Abstracting then means
that some subproperty is not taken into account any more, i.e. property is not used
any more to distinguish between objects.

Thus, for this first option it is still the prectswn of a property, be it with respect
to a collection of other properties, that is taken as relevant.

In the following we use I as an arbitrary index set .

Definition 3.4.
S from < S, SAT > is abstract with respect to < S', SAT1 > if
there are Si E S', i E I, such that
for all 0 E 0, 0 SAT S iff there is i E I such that 0 SAT1 s;.

Running example.
S is abstract with respect to < S', SAT1 > if
there are Si E S', i E I, such that S = U;ei S[.

15

Clearly, there is no dual notion of expressiveness. However, using the same intuition it
is obvious how one can define abstractness, and expressiveness too, for one specification
structure with respect to another.

Definition 3.5.
< S,SAT >is abstract with respect to< S',SAT1 >iff
all S E S are abstract with respect to < S', SAT1 >.

< S, SAT > is expressive with respect to < S', SAT1 > iff
for all S E S there are S; E S, i E I and S' E S' such that
for all 0 E 0, 0 SAT1 S' iff 0 SAT S or there is i E I such that 0 SAT S;.

Running example .
< S, SAT > is abstract with respect to < S', SAT' > if for all S E S,
there are S! E S', i E I, such that S = U;ez s;.
< S,SAT >is expressive with respect to< S',SAT

1 >if for all S E S,
there areS; E S, i E I and S' E S' such that S' = UiEl S; U {S}.

Remark.
Following the intuition, in order to be more expressive than S' S should allow the
description of enough, possibly overlapping, subproperties to subdivide every property
that 5 1 can describe. However, for S to be more abstract than S' it is only required
that every property that, again, S can describe can be subdivided into su bproperties
describable in S'. It should not be misread as the ability of S to abstract every col
lection of subproperties that are describable in S' to a single property. This would in
general be a requirement that is too strong to fulfill.

Proposition 3.4.
If< S, SAT > is expressive with respect to < S', SAT1 > then
< S', SAT1 > is abstract with respect to < S, SAT >.

The converse does not hold.

Remark.
One might ask whether stronger requirements should be posed for abstractness or ex
pressiveness. In our opinion this is not the case. The motivation is that the distinctions
that specifications make between objects are less precise than the concrete properties
one might decide to ignore.

16

A simple example is that for certain limited domains 0 the properties "is prime" and
"is odd" might coincide. If one decides not to be interested any more in the property
prime, this does not mean that one also wishes to loose the distinction between even
and odd.

Sof!le _mo~. intricate questions of the same nature are answered via an example.

Consider the specification structure 0 = {1,2,3,4},
s1 = {1}, s2 = {2}, s3 = {3}, s4 = {4},
S13 = {1,3}, s24 = {2,4}, s23 = {2,3}.

a . Should properties that are taken together be disjoint?
No, consider S13 and S23 . One might decide to ignore differences in terms of "pro
perty" 3.

b. Would it be sensible to require that if the difference between S1 , S2 , S3 and S4 is
ignored then the same should hold fro s13 and s24?

No, because the properties that the division in subsets reflects might be quite inde
pendent:
sl - s4 might reflect properties about ordering. 03 for example might reflect being
greater then 2 and smaller than 4,
S13, S24 being odd respectively even.

c. A similar argument forbids one to ignore the difference between, for example, S1

and s2 if the difference between s13 and s24 is ignored .

All the examples depend on the fact that intuitive subproperties can be chosen that
cannot be distinguished when only the division of 0 into subsets of objects that they
induce is considered. This is in general the case for specification structures.

Option 2.

Another possibility to define abstractness (expressiveness) is to require that a specifi
cation structure can characterise at most (as least) as many properties as some other
structure, i.e. the number of different properties is taken as relevant here.

Definition 3.6.
< S, SAT > is weaker than < S', SAT' > if
for all S E S there is S' E S' such that S "'0 S'.

< S,SAT >is stronger then< S',sAT1 >if
for all S' E S' there is S E S such that S "'0 S'.

Running example.
< S,SAT >is weaker than< S 1,SAT1 >iff S ~ S'.

< S,SAT >is stronger than< S',SAT1 >iff S' ~ S .

Proposition 3.5.
< S,SAT >is stronger than< S',SAT1 >iff
< S',sAT1 >is weaker than< S,SAT >.

Definition 3.7.
< S , SAT >is equivalent to< S1,SAT1 >, < S,SAT > .-vo < S',SAT1 >,if
for all S E S there is S' E S' such that S .-vo S' and vice versa.

Running example .
< s,sAT > .-v0 < s',sAT' >iff s = s'.

Proposition 3.6.
< s,sAT > .-v 0 < s'sAT' >
iff
< S,sAT >is both stronger and weaker than< S',SAT1 >
iff
for all 01,02 E 0, (01 .-vs 02 iff01 .-v 5 , 02).

17

Behaviour structures are a special case of specification structures; the extra feature
being that the relation BEH is functional, i.e. BEH induces an equivalence relation, i.e.,
BEH induces a partitioning on 0.

Comparing a behaviour structure and a specification structure turns out to be no
different from comparing two specification structures.

When comparing two behaviour structures the special nature of BEH does have some
effect.

As, in the context of the running example, BEH induces a partitioning on 0, abstract
ness respectively expressiveness reduce to this partitioning being coarses respectively
finer . The notions weaker and stronger collapse to equivalence.

Running example.
B is abstract with respect to B' iff B is a coarser partition of 0 than B'.
B is expressive with respect to B' iff B is a finer partition of 0 than B'.
B is equivalent to B' iff B = B'.
B is weaker than B' iff B = B'.
B is stronger than B' iff B = B'.

Proposition 3.7.
For behaviour structures,
B is stronger than B' iff B .-vo B'.

Remark.
We wish to point out that it is very easy to construct specification structures that
possess the properties mentioned thus far. Namely, by choosing for S the standard re
presentation in terms of subsets of 0. The problem is, that the specification structures
thus obtained are not, in general, justifiable with respect to the intuition as discussed
in Section 2. This was one of the reasons that led us to consider intuitive justification.

18

3.2.2.2. Soundness and completeness

Proof structures.

The discussion of formalisms has up till this point been confined to the following fra
mework:

1. A set of formulae of form 0 SAT S;

2. A model to determine whether a formula is true, namely a specification structure
< S, SAT >; a formula is true if and only if this is the case according to the definition
of the relation SAT.

To determine via a model whether a formula is true involves the use of properties of
that model. At the current level, this requires only application of the relation SAT, but
in more complex formalisms this may, for example, involve considerable use of intricate
mathematical structure of the model.

To facilitate the discussion in this section, we restate this in slightly more formal nota
tion. All we need as representation of a language is a set of formulae, <P.

Definition 3.8 (cf. [Da80]).
A model M for 4> is a structure that allows one to determine for each <P E q; whether
<P is true.

M I= <P denotes that <P is true in M.

There is a small complication here in that in practice one is not so much interested in
whether a formula is true for one particular model, but rather for all models that are
of a certain form.

Definition 3.9.
A model structure M for <Pis a set of models for <P.

<P is valid for M, notation M I= <P, if for all M E M, M I= <P .

A proof system aims at avoiding the usually complicated procedure of establishing
whether M I= <P by circumventing the use of models. A subset of formulae, axioms,
and also a set of rules to derive formulae are defined . These definitions are purely in
terms of the syntax, i.e., the form, of the formulae-no use is made of models.

Definition 3.10.
A proof structure < A, R > for a set of formulae <P is a syntactically defined

(i) set of formulae A, called axioms and
(ii) set of rules R, called proof rules .

<P, <P 1 , <P 2 , ... are variables ranging over 4>, A, A 1 , A2 , . .. range over A and R, R1 , R2 , ...

range over R .

19

A formula <I> is provable under no assumptions in < A,R >,notation 1-<A,R> <I>,
if <I> can be derived from axioms in A through use of rules in R. Where no confusion
is likely to occur, < A, R > is omitted from the notation.

Although we motivated derivability as, in some sense, an alternative for being true in
a model, this connection between proof structure and model needs to be established.
Although there is very little structure present at this level , it is still possible to discuss
most of the notions that apply to proof structures .
In fact, the property that a proof structure captures the interpretation of formulae in
the model can be formulated in an even more abstract setting. All that is necessary is:

1. A set ij; of formulae;

2. a model structure M to determine F <I>;

3. a proof structure < A, R > to determine 1- <I>.

Definition 3.11.
For ij;, a proof structure < A, R > is sound with respect to
a model structure M if
for all <I> E Cj;, if 1- <I> then F <I>.

For ij;, a proof structure < A, R > is complete with respect to
a model structure M if
for all <I> E Cj;, if I= <I> then 1- <I>.

In the case of formalisms to describe computations, complete proof structures usu
ally do not exist. The reason is, that the domains over which is computed allow no
complete axiomatisation of their properties, e.g., arithmetic of natural numbers.

The way out is, to split completeness into completeness with respect to the axioma
tisation of all non-domain properties and completeness with respect to the domain
properties and only require the former. This leads to the notion of relative complete
ness . Intuitively, this notion states that a formalism is complete, given that all domain
properties that are true can be used as axioms. In the sequel, completeness always
means relative completeness.

For a thorough treatment of this subject in the context of imperative sequential pro
gramming, see [Ap81]. On notions of soundness, see [OD82].

3.3. Level 2-Structured objects

In this subsection we discuss the role of structure in connection with formalisms . We
only address the effects of structure that are present explicitly in the system under
description.

Other ways of structuring descriptions can be envisaged, for instance conceptual struc
turing of behaviour independent of the structure of the system that generates that
behaviour. An example is the Statecharts approach [Ha87], where descriptions are
structured according to conceptual modes rather than actual states in which a system

20

can be operating. Another possibility is structuring according to the execution rather
than the implementation of an algorithm. We do not investigate such other options in
this paper.

Two well-known occurrences of structure are in compositional semantics for program
maing languages and proof systems for specification formalisms.
·our aim in this ·subsection is to investigate- the relationship between. these. two via the
models for specification formalisms.

3.3.1. The framework

When motivating the introduction of object structures we argued that, in order to
discuss formalisms, one first needs something to describe. Similarly, in order to dis
cuss structure, that structure needs to be introduced somewhere. In the framework
presented thus far, no such structure is present.

In the literature, the most prominent places where structure is considered are the realm
of compositional semantics for programming languages, and the realm of compositional
or modular proof systems for specification formalisms. The structure is in both cases
the syntactical structure of the programming language. The idea is, that this structure
should be reflected in, respectively, the semantics of the programming language and
the proof system.

The most obvious way to introduce structure in the present framework seems there
fore to be to add a language, with structure, to describe objects. This would amount
to regarding the objects as programs and the language as a programming language.
However, since programs are constructed from atomic programs using constructors the
most direct approach is to represent programs as objects. So to discuss structure, it is
the object domain 0 that needs to be extended accordingly with constructors.

Definition 3.12.
An object structure < 0, C > consists of

(i) a set of objects 0 and

(ii) a set of constructors C;
a constructor is a function of finite arity, say n, from 0 X ... X 0--> 0.

O,OI,02, ... are variables ranging over 0 , C,C1,C2,·· · range over C.

Running example.

(i) 0 again is some set of objects, but now these objects have structure:
They are either basic objects as used in the canonical example up till now, or
complex objects that are generated using the constructor given in (ii);

(ii) C is a set consisting of one constructor, Cu : 0 x ... x 0--> 0.

0, Oil 02, ... are variables ranging over 0.

21

3.3.2. The notions

At the level of structuring that we consider in this subsection, the following entries
along the axes will be discussed.

Concepts

Areas

Full abstractness, compositionality, modularity, completeness.

(Constructors in) behaviour structures,
(constructors in) specification structures,
(construction rules in) proof structures.

Investigations in the context of temporal logic based semantics can be found in [Fi87].

3.3.2.1. Full abstractness

We start by defining full abstractness of one behaviour structure with respect to ano
ther. This notion only just belongs to the subsection on structure-it does involve
structure of the objects, but not of any of the other structures. The intuitive idea is
that "fully abstract" behaviours should distinguish between objects if and only if these
objects can be distinguished in a given behaviour structure after putting them in some
context. The name is rather ill-chosen: the notion is about equivalence, i.e., as much
about expressiveness as about abstractness .

Intuitively, a context is a piece of program with "holes" in which a subprogram can be
"plugged", possibly at several places at the same time, resulting in a complete program.
Of course, in general not all subprograms fit all contexts.

We take the formal definition form (HGR87], which in turn is based upon (Pl83]. We
use the notion of equivalence defined in Subsection 3.2.2.1.

Definition 3.13.
A context is a (partial) function 0 --> 0.
A context structure H is a set of contexts.
H1 ,H2, ... are variables ranging over H.

Definition 3.14.
A behaviour structure B is fully abstract with respect to a behaviour structure B' and
a context structure H if
for all 01,02 E 0,
01 ~B 02iffforallHEH,H(O!) ~B' H(02).

As can be seen from the definition, contexts are even defined independently of the
structure C of the object structure. However, in all practical cases, H is defined via
C, justifying its inclusion in Subsection 3.3.

Remark.
A fully abstract behaviour structure with respect to a given behaviour structure B' can

22

of course always be constructed. Just define the behaviour structure < B f• BEH f > as
follows .

Bf = {BJ ~ 0 :for all 01,02 E BJ, HE H . H(01) "'B' H(Oz) and BJ is
maximal with respect to this requirement},

BEHj is "E".
-··· -

Again, apart from the abstractness property, there is no intuitive support for this re-
presentation of behaviour.

3.3.2.2. Compositionality and modularity

We aim in this subsection to establish a link between the instantiation of compositio
nality in the realm of behaviour structures and in the realm of proof structures via the
realm of specification structures .

3.3.2.2.1. Compositionality and modularity in the model

We return to the question how structure of the object structure is reflected in the other
structures.

The most well-known instantiation of compositionality is, firstly, in the area of a pro
gramming language and its semantics. Secondly, this concept, together with modularity,
is used in the area of proof structures.

In our approach, the first case corresponds to an object structure with a behaviour
structure. A behaviour structure, however, is just a special instantiation of specification
structure. This is a reason to extend the notion to specification structures .

A more important motivation, however, derives from the second case . As presented by
Zwiers in [Zw88], there are two related concepts, compositionality and modularity, in
the area of proof structures. We argue that it is possible to distinguish compositionality
and modularity before going to the realm of proof structures, namely in the area of
specification structures.

We go from the particular to the general in this case and discuss behaviour structures
first and specification structures later.

Behaviour structures

Intuitively, a behaviour structure is compositional if the behaviour of a structured
object is obtained from the behaviours of its subobjects . Thus, compositionality is a
property of the definition of the semantics, or, in our framework, of the definition of
the relation B EH .

To further aid the intuition, we mention a typical example of a non-compositional be
haviour structure. Assume that the first and last state of the execution of a program in
isolation are taken as behaviour for shared variable programs. The parallel composition
operator is then inherently not compositional-the information necessary to describe
the interaction of parallel components during execution is simply not available.

An essential feature of a compositional behaviour structure, independent of the parti-

23

cular way in which the relation BEH is defined, is therefore, that enough information
is present in the behaviours of the constituents of a structured object to obtain the
behaviour of the structured object.

This, in fact, is the rather subtle difference between requiring that the behaviour of a
structured component is obtained from its constituent objects or could in principle be
obtained. In our formalism the latter could be expressed as follows.

Definition 3.15.
A behaviour structure < B, BEH > for object structure < 0, C > is potentially compo
sitional with respect to a constructor C E C of arity n
if
for all OJ, ... ,On, 0~, ... ,0~ E C,
ifC(OJ, ... ,On) f C(O~, ... ,O~)
then there is i E I such that 0; f o;.

As this part still generalises directly to specification structures, we go to this setting
for a moment to provide some further definitions and a proposition.

Definition 3.16.
A specification structure < S, SAT > for object structure < 0, C > is potentially compo-

sitional with respect to a constructor C E C of arity n
if
for all Olt ... ,On and 0~, ... , 0~ E 0,
ifC(OJ, ... ,On) f C(O;, ... ,O~)thenthereisiElsuchthatO; f o;.

The obvious extension to specification structures as a whole is to require potential
compositionality for all constructors.

Definition 3.17.
< S,SAT >is potentially compositional with respect to< O,C > if< S,SAT >is
potentially compositional with respect to all C E C.

Running example.
We now define a specification structure for the object structure in the running example.
A property is still represented as a set of basic objects .
We extend the specification structure to the structured objects by changing the satis
faction relation from "E" to set inclusion, "~", between the set of the basic objects
that the object is built from and the specification.
The only constructor, Cu, is potentially compositional, and so is therefore the whole
structure. Note that no criterion has been formulated yet .

Proposition 3.8 (cf. (HGR86]).
If < B, B EH > is fully abstract for < 0, C > with respect to itself then
< B, BEH > is potentially compositional.

We now return to behaviour structures to discuss compositionality.

24

To focus the discussion, we provide the formal definitions. As these may seem rather
complicated, some explanation and justification follows. As mentioned above, compo
sitionality is a property of the definition of the BEH relation . To enable a formulation
of the property, a little more about the form of the definition of this relation has to be
required.

Definition -3-:-1-8~
A behaviour structure< B,Kc,BEH >for an object structure< O,C >consists of

(i) a set of behaviours B,

(ii) a functional relation BEH ~ 0 x B defined using

a. a set K C of criteria (predicates) of finite arity on B x ... x B,

b. a one to one correspondence K : C--+ K C between the constructors of arity
n from C and the criteria of arity n + 1 from K C·

B,Bt,B2, ... are variables ranging over B. Kc denotes the criterion corresponding to
the constructor denoted by C.

We start by defining compositionality with respect to one constructor. We again point
to the fact that, in contrast to potential compositionality, compositionality is a property
of the definition of the behaviour structure.

To avoid complicating the definitions unduly, the index set I is often left implicit.

Definition 3.19.
A behaviour structure< B,Kc, BEH >for an object structure< O,C >is compositional
with respect to a constructor C E C of arity n
if
for all 01, ... ,0n E 0,
C(01, ... , On) BEH B is defined as
C(Ot, ... ,On)BEHB, BE B iff there are B; E B, E I, such that O;BEHB; and
K c(Bt, ... , Bn, B).

Running example.
Turn the specification structure into a, trivial, behaviour structure by changing"~" to

A compositional definition of the Cu-operator is then
Cu(Ot, .. . , On) BEH B iff there are B;, i E I, such that 0; BEH B; and U;Ef B; =B.

Definition 3.20.
A behaviour structure< B,Kc,BEH >is compositional with respect to an object
structure< O,C >if< S,SAT >is compositional with respect to all C E C.

Remark.
This is equivalent to the well-known notion that a semantics is compositional iff the
semantics of a component is defined as a function of the semantics of its subcompo
nents. The idea is that compositionality is captured by requiring, for each constructor,

25

a criterion to decide the behaviour of a structured object, given the behaviours of its
subobjects . The criterion is functional in B, because BEH has to be functional, a re
quirement for a behaviour structure.

Bypassing the obvious analogeous proposition for single constructors the following pro
position should now be evident.

Proposition 3.9.
< B, BEH > is potentially compositional iff
there is a compositional< B', Kc, BEH' >such that< B, BEH >~a< B', Kc, BEH' >.

The equivalence relation is extended in the obvious manner: K c plays no role in
the definition.

Example.
Rather than using the running example here, we suggest to consider the more practical
case of an operationally defined behaviour structure, e.g., an operational semantics,
that is not compositional but is, by chance, equivalent to a compositional one. Then
that operational semantics is potentially compositional.

One might argue that for compositionality there should be an operator that actually
constructs the behaviour for the structured object from the behaviours of its constitu
ents. This constructor can, if so desired, be defined immediately using the definition
provided: define BEH(C(OJ, ... ,On)) to be the behaviour B such that Kc(B1 , .. . ,En, B).
Again, as BEH has to be functional, the criterion should allow only one behaviour for
any selection of 01, .. . , On.

We have chosen the form of the definition as given because it generalises more easily
to specification structures; this generalisation is the next topic.

Specification structures

We now introduce compositionality and modularity for specification structures. As
far as we know, the resulting notions in this area have not been introduced in the
literature. Apart from showing how they arise as a natural extension of compositionality
to specification structures, we also show the relationship with compositionality and
modularity as introduced for proof structures by Zwiers in [Zw88]. The intention is to
improve the understanding of the concept by showing the links-no claims are made
as to practical relevance.

We differ slightly from Zwiers in that we first introduce the notions for single con
structors rather than directly for whole structures. We shall explain differences and
similarities during the development of the notions.

Similarly as above, to be compositional a specification structure should reflect the struc
ture of the objects. Also, again compositionality is to be a property of the definition
of the relation SAT. A point of difference is that objects have just one behaviour, but
may satisfy many different specifications .

This influences the definition at two points:

(a) The structured object may satisfy more than one specification and

(b) the subobjects may satisfy more than one specification.

26

Recall that, intuitively, a b~haviour structure .was said to be compositional if the beha
viour of a structu;;d.object was given as a function of the behaviours of its subobjects.

It is clear, that point (a) can only lead to an adaptation of the definition to the ef
fect that for all specifications of a structured object satisfaction should be defined via
specifications of the subobjects.

It is also dear, that the choice of specifications for the subobjects mentioned in point
(b) cannot be arbitrary. For instance, very little about a specification of a structured
object could be inferred from weak specifications of its subobjects.

The most obvious adaptation concerning point (b) is to just require that there exists a
set of subspecifications that enables one to decide satisfaction of the specification . This
choice we formalise now; another option will be discussed later. The name compositi
onality is retained because its use is already established for the corresponding notion
for proof structures.

To define a notion of compositionality that is a property of the definition of the rela
tion SAT, we have to extend this relation in a similar manner as the relation BEH before.

Definition 3.21.
A specification structure< S,Kc,SAT >for an object structure< O,C > consists
of

(i) a set of specifications S,

(ii) a relation SAT t;; 0 x S defined using

a . a set K C of criteria of finite arity on S x ... x S,

b. a one to one correspondence between the constructors of arity n from C and
the criteria of arity n + 1 from K C·

S, S 1, S2, .. . are variables ranging over S,](c,](c, ,](c2 , . . . range over K C.](c denotes
the criterion corresponding to the constructor denoted by C.

Definition 3.22.
A spe(:ification structure< S, K C • SAT > for an object structure< 0 , C >is compositi-

on a! with respect to a constructor C E C of arity n
if
for all 01, ... ,OnE 0,
C(OJ, ... ,On)SATS is defined as :
C(Oh···,On)SATS iff
there are S; E S, i E I, such that
O;SATS; and Kc(SJ, ... ,Sn , S) .

27

Definition 3.23.
A specification structure < S, K C• SAT > is compositional with respect to an object
structure< O,C >if< S,SAT >is compositional with respect to all C E C.

Running example.
A compositional definition of the constructor, Cu, is
Cu(01, ... ,On) SAT S if there are S; such that 0; BEH S; and U;Ef S; ~ S.
Indeed, the criterion corresponding to Cu, say /(Cu, only depends on S1 , . . . , Sn and S.

Proposition 3.10.
< S,SAT >is potentially compositional iff
there is a compositional< S', K c,SAT1 >such that< s, SAT> ~a < S', K C• SAT >.

Compositionality poses only very modest requirements on the criterion. It is, for exa
mple, not required that the criterion evaluate to the same result on even equivalent
specifications. Rather than to base an alternative notion on a loose remark like this,
we investigate this problem in a more general manner to arrive at the second notion
concerning structure.

We recall that the aim is to reflect the structure of an object in the way in which it
is decided that it satisfies a specification. Compositionality requires only that there
exists a set of subspecifications, satisfied by the subcomponents, that contains enough
information to make the criterion hold. Compositionality thus allows much freedom in
the choice of the criterion .

In particular the following rather problematic situation can occur:
Let S1, ... , Sn be specifications that are generated as a top down development step with
respect to a constructor C of a specification S. The justification of this step should be
that every set of subobjects such that 0 1 SAT S1 , ... ,On SAT Sn combines to an object
such that C(01, ... ,On)SAT S. Assume this to be the case. In this case one would
like to have Kc(Sh ... , Sn, S) fulfilled. Compositionality does not ensure this. This is
because the only requirement is that for each of the above mentioned sets of objects
there exist corresponding specifications for which the criterion holds. In principle, there
could be infinitely many such sets of objects; a different set, i.e. infinitely many sets, of
subspecifications might be needed though to establish that each combination satisfies
S via the criterion from the definition.

We now give a stronger requirement that, intuitively, states that the criterion uses all
the information present in the set of subspecifications.

The idea is, more precisely, that if there is enough information in the subspecifications,
to decide that the combination of any collection of objects that satisfy them satisfies
the larger specification, then the criterion should also enable one to decide so.

Definition 3.24.
A specification structure < S, K C• SAT > for an object structure < 0, C > is modular
with respect to a constructor C E C of arity n
if
< S,Kc,SAT >is compositional and

28

for all Sl> ... , Sn, S E S it holds that
if for all 01, ... ,0n E 0 such that O;SATS;, i E I, C(OI, ... ,On)SATS
then Kc(SI, ... , Sn, S).

Note that in the compositional case one might have to find different collections of
Sis for each collection of O;'s to enable u~e of the_ criterion.

Definition 3.25.
< S,Kc,SAT >is modular with respect to< O,C >if it is modular with respect to
all C E C.

It is easy to see, in the running example, that the criterion that made Cu compo
sitional, UiE/ sl ~ S, also makes Cu modular.

To obtain a criterion that is compositional but not modular, intuitively some informa
tion present in subspecifications needs to be thrown away by the criterion. However, in
order to remain compositional it must always be possible to offset this loss by choosing
a different subspecification for any particular subcomponent satisfying the subspecifi
cation.

There is a subtle distinction between cases where such "better" subspecifications can
or can not be chosen solely on the basis of the original subspecifications.

The examples given here are based on work by Widom, [Wi87, WGS87], in the area of
trace-based formalisms. We prefer to stay close to the running example, both for ease
of exposition and to show that the examples are independent of the trace framework.

Example 1.
Assume the set of specifications, S to be extended, like before, by adding all S U { * },
where * is not an object. Let the satisfaction relation remain "~".
Let also the criterion remain the same.

Now assume 0; SAT S; U { *}. Then also 0; SAT S;. It is therefore possible to infer, using
the criterion with these specifications, that Cu(01> ... , On) SAT S, where S = UieJ S;.
However, the criterion does not hold for S; U { *}, as U;ei S; U { *} CZ. S.

In this example, it is possible to find subspecifications for which the criterion does hold
by only looking at the subspecifications: just delete the *·
This is the situation treated in [Zw88], where a kernel rule is added enabling to substi
tute specifications by better ones.

This can not always be done.

Example 2.
Assume the object set 0 is also extended, namely with objects"+" and"-". The spe
cification structure is extended correspondingly with, for all S, S U { +} and S U {-},
but also retains the extraS U { *} specifications.

The satisfaction relation is canonically extended, in the obvious way, with the extra
proviso that for S' ~ S both S' U { +} and S' U {-} satisfy S U { * }.

29

The criterion is also canonically extended, but with the extra proviso that as soon as
a subspecification contains *• it evaluates to false.

Now if a subspecification contains*, one has to choose a better one with either+ or-.
Contrary to the situation before, this can not be done on the basis of the subspecification
only: one has to know the syntax of the specified object .

This prompts a further refinement of the notion of modularity.

Definition 3.26.
A specification structure< S,Kc,sAT >for an object structure< O,C >is weakly
modular with respect to a constructor C E C of arity n
if
< S , K 0 ,sAT >is compositional and
for all S1 , ... ,S,., S E Sit holds that
if for all 0 1 , ... , 0,. E 0 such that 0; SAT S;, i E I, C(0 1 , ... , On) SAT S
then there are Si,S' E S such that S; "'O Si, S "'O S' and Kc(S;, ... ,S~,S') .
This is a quite useful property, as it states that the criterion is in fact independent of
the syntax of the subcomponents, provided that the right subspecifications are used .

Proposition 3.11.
If< S,Kc,SAT >is modular, then< S,Kc,sAT >is weak ly modular.

The converse does not hold.

Proposition 3.12.
If < S, SAT > is potentially compositional
then there is a modular< S', K c,SAT

1 >such that< S,SAT > "'0 < S', K c,SAT1 >.

The converse does not hold .

Remarks .
It may seem strange that (potential) compositionality is enough to guarantee the exis
tence of an equivalent modular specification structure . We attempt an intuitive expla
nation .

Potential compositionality means , that there is enough information in some collections
of subspecifications to define a criterion (to establish , for all collections of subobjects
plus a specification, whether their combination satisfies that specification). However,
it is not required to use this information to the full; this is the additional requirement
to achieve (weak) modularity.

Therefore, potential compositionality is about the presence of information , compositi
onality and (weak) modularity about its use in different ways .

Note, that it is not enough to require about the criterion that it is insensitive to spe
cification equivalence to obtain modularity. More formally th is can be stated as follows .

Definition 3.27.
Kc is insensitive with respect to specification equivalence "'0 if

for all Sll ... , Sn, S, s;, ... , S~, S' E S
such that S; "' oSi, i E {l, ... ,n}, and S "' oS',
Kc(SJ, ... ,Sn,S) iff (S;, ... ,S~,S').

Proposition 3.13.
If Kc is modular, then all Kc are insensitive to specification equivalence.

The converse does not hold.

3.3.2.2.2. Compositionality and modularity for proof structures

30

The concept of structuring is also applicable to proof systems. The interpretation here
is, that the rules of a proof structure reflect the structure of the object structure.

Definition 3.28.
A constructor rule R E R for a constructor C E C from a proof structure < A, R > for
a specification structure< S,SAT >for an object structure< O,C >is compositional
if
R is of the form

iff- O;SATS;, i E I, and f- Gc(Sb···,Sn,S) (where Gc denotes ann+ 1-ary predicate
if Cis an n-ary constructor)

then f- C(OJ, .. . ,On)SATS.

Definition 3.29.
A proof structure < A, R > for a specification structure < S, SAT > for an object
structure < 0, C > is compositional if all constructor rules are compositional.

Definition 3.30.
A constructor ruleR E R for a constructor C E C from a proof structure< A, R > for a
specification structure < S, SAT > for an object structure < 0, C > is compositionally
complete
if
R is compositional and
ifF C(OJ, .. . ,Cn)SATS
then there areS;, i E I, such that f= O;SATS; and f- Gc(S', ... ,Sn,S).

The idea is, that for the right choice of specifications for given objects if their combina
tion satisfies a specification, then this can be proven using the rule. It is the obligation
of the proof structure as a whole to ensure that also f- 0; SAT S; can be obtained.

Remark.
We wish, at this point, to draw attention to the fact that although in the definitions
in the specification structure as well as in the rules in the proof structure criteria can
occur, they need neither be connected nor be present in both frameworks at the same
time.

31

Definition 3.31.
A proof structure < A, R > for a specification structure < S, SAT > for an object
structure < 0, C > is constructor compositionally complete if all constructor rules are
compositionally complete.

Note, that completeness of the proof structure still depends upon completeness of pos
sibly other rules as well.

Similarly as in the case of the model, one wishes to state independence of object syntax
in the proof system.

Definition 3.32.
A constructor rule R E R for a constructor C E C from a proof structure < A, R >
for a specification structure< S,SAT >for an object structure< O,C >is modular
if
R is compositional
and
for all S1, ... , Sn, S E S it holds that
if for all OJ, ... ,On E 0 such that f= O;sATS;, i E I, f- C(OJ, .. . ,On)SATS
then f- Gc(St, ... , Sn, S).

Note that this only states that the Gc is independent with respect to choice of possibly
better subspecifications-the rule need not be complete.

Definition 3.33.
A constructor rule R E R for a constructor C E C from a proof structure < A, R > for a
specification structure< S, SAT >for an object structure< 0, C >is modular complete
if
R is modular
and
ifF C(OJ, ... ,On)SATS
then there areS;, i E I, such that f= O;SATS; and f- Gc(S', ... ,Sn,S).

Definition 3.34.
A proof structure < A, R > for a specification structure < S, SAT > for an object
structure < 0, C > is constructor modular complete if all constructor rules are con
structor modular complete.

Comparison to Zwier's approach

Another way to arrive at compositionality is the approach by Zwiers, presented in
(Zw88], using the notion of black boxes.

We briefly introduce this approach, referring to (Zw88] for further details . The moti
vation there is mainly from the proof theoretic point of view .

Intuitively, compositionality states that for given, concrete, programs the proofs reflect
the structure of the program whereas modulatity additionally requires that this is the
case for programs that are constructed of black boxes for which only specifications are

32

given.

To formalise these intuitions, it is necessary to have variables in the programming lan
guage to denote black boxes.

Definition 3.35.
An object-structure < 0, C ·>· is d·efined as above, with the addition th"ar-o is partiti
oned into:

(a) A set of concrete objects 0 1 and

(b) a set of black box objects 8.

Let 0,01,02,··· be variables ranging over 0 and let 8,(h,82,· ·· range over 8. Let
0(81, ... , 8n) denote a structured object that has black box objects 81, ... , 8n among its
constituents. Again, the object structure is taken to represent a programming langu
age. It is allowed to mix programming language and black box variables: a mixed term
framework.

Definition 3.36 [Zw88].
81 SAT S, ... , 8n SAT Sn semantically implies 0(81, ... , 8n) SAT S, notation
81 SAT S, ... , 8n SAT Sn F 0(81> ... , 8n) SAT S, if
for all 01, ... ,0n E 0,
ifF 01 SAT s}, ... , F On SAT Sn then F 0(01, ... ,On) SAT S.

A similar definition applies for objects rather than black boxes.

Definition 3.37 [Zw88] .
A proof structure is compositionally complete if
ifF 01 SAT s1, ... , F On SAT Sn and
01 SAT s1, ... ,On SAT Sn F 0(01, ... ,On) SAT s
then there are s; such that
F 0; SAT S; and 01 SAT s1, ... ,On SAT Sn f- 0(01> ... ,On) SAT s.

Definition 3.38 [Zw88].
A proof structure is modular complete if
for all satisfiable S 1 , ... , Sn and all S,
if8!SATSJ, ... ,8nSATSn F 0(8J, ... ,8n)SATS
then 81 SAT sl, ... , 8n SAT Sn f- 0(81, ... , 8n) SAT s.

The relationship between the two approaches is as follows.

Proposition 3.14.
If a proof structure is constructor compositionally complete and complete with respect
to the other rules then it is compositionally complete.

The converse generally does not hold; see [Zw88] for explanation involving kernel rules.

33

Proposition 3.15.
If a proof structure is constructor modular complete and it is complete with respect to
the other rules then it is modular complete.

The converse generally does not hold.

Remark .
We wish to draw attention to the fact that compositionality or modularity in a model
and for a proof structure are to some extent independent. J(c and Gc need not be the
same, for instance.

Proposition 3.16.
Let expression of arbitrary K c be allowed, then
there exists a constructor compositionally complete proof structure and a constructor
modular complete proof structure for< S,SAT >
iff
< S,SAT >is potentially compositional.

The usefulness of these properties for proof structures is discussed thoroughly in [Zw88).
We consider these properties useful for models as well for two reasons.

At the design state of a formalism it helps if these properties, when desired for a proof
structure, are already present in the model-both to design proof rules as well as to
verify their correctness.
When justifying a semantics given in the form of axioms, it is necessary to prove that
it is consistent, i.e. that there is a model. In principle it is enough to give a model in
which each formula gets a value. However, it is even better, and also standard practice,
to represent operators in the model. In this case, the operators are the constructors.
Just as compositional (denotational) models are used to clarify compositional proof
systems, so are modular ones to clarify modular systems.

Also, when the formalism is used to develop programs it appears in practice that the
more similarities there are between behaviour structure and specification structure,
the easier it is to write correct specifications. In the same way, the more similarities
there are between the structure of behaviour structure, specification structure and proof
structure (in the case of compositionality), or between specification and proof structure
(in the case of modularity), the easier it is to write correct specifications for composition.

3.3.2.3. Interpretations of the concepts compositionality and modularity

Apart from rather narrow definitions that depend on restrictions specific to the par
ticular framework at hand, there appear to be at least three interpretations in the
literature. Most of the time, even when only compositionality is claimed, in fact mo
dularity is achieved.

(i) The specification language has rules for different constructors. For example
parallel and sequential execution, guarded commands with nondeterministic or
in some respect fair choice.

Examples of such a formalism are [BKP84, 85].

34

(ii) The specification language has only one constructor rule; in practice this means,
a rule for parallel combination. This makes quite a lot of difference in the use
of a specification method, as we will show in the following examples. A further
consequence is that the specification method can only deal with programming
languages that have no other constructs than the parallel constructor, unless
extra rules for the last development step (of the specification into a program)
are added.

An example of such a formalism is [NDG086].

(iii) The specification language has, one or more, constructor rules, but the su bspecifi
cations describe subcomponents only as subcomponents of the larger component
that they belong to rather than independently. In the rules this shows in the
form of what has to be checked about subcomponents. The premises of the rule
to derive f- C(01, ... ,On) SAT S that were of the form

f- P; SAT S;, i E I ,

are replaced by

f- p SAT S; , i E I .

This means, that it can only be decided that a subcomponent satisfies the re
quirements of its subspecification when the whole component is available. The
application of such a formalism seems to be mostly to structure and ease cor
rectness proofs and guide the design in an intuitive way. An example of such a
formalism is [Sta85), where liveness properties give rise to this form of composi
tionality.

Example.
A very simple example showing the difference between the use for formalisms like (i)
and (ii) is the parallel or sequential combination of two assignments, say 0 1 :: x := 1
and 02 :: x := 2.

Obvious, informal, temporal specifications are

S, .. - inactiveO, U (active01 A O(x = 1 A DinactiveO!))

respectively

S2 ::= inactive02 U (active02 A O(x = 2 A Dinactive02)).

These subspecifications are, intuitively, all that should be told about the subcompo
nents.

In a formalism as mentioned under (i), there would be two different rules for parallel
and sequential composition. As can be read in, e.g., [BKP84] , the difference between
the two rules is mainly, that the premisse of the parallel rule would be of the form

35

(S1 A S2 A D(not(active01 A active02)))-+ S.

For the sequential rule this would require additionally

(51 A S2 A D((not(active02)Unless active OJ)))-+ S .

In the formalisms as mentioned under (ii), the only way to mimm..ick sequential compo
sition via the first rule-the only available one-is to include the necessary information
in the subspecifications. For instance as follows .

S~ ::= inactive01 U(active01 A O(x=l A Dinactive01))

and

S~ ::= inactive02 U ((active01 A inactive02)

U (active 02 A O(x = 2 A D inactive 01))) .

respectively.

Remarks.

1. In principle it is possible to transform approach (ii) into approach (i) through using
the general rule to find rules for specific constructors. This, however, is not much
less difficult than designing such rules from scratch, as one has to separate the
information about a component from the information about constructors . Both of
these have to be formulated in a general way, as several kind s of subcomponents
may be combined via, also, several kinds of constructors.

2. To avoid confusion, we draw attention to the fact that in (i) and (ii) it is only
information about the specific environment in which the subcomponent is placed
that is absent. It is not at all forbidden to refer to a subcomponents potential
environment. Examples of this are again (NDG086] and (BKP84, 85].

3.4. Further levels?

All notions thus far have been defined at quite abstract levels . The next level would,
in our opinion, consider, in abstracto, languages, with or without structure , with some
semantics, both to write specifications in and for programs, and a satisfaction relation
with, presumably, some special properties.

This level of abstraction is closer to the world of real descriptions formalisms than the
ones before. Surprisingly enough, it appears that no further relevant notions can be
defined than at the previous levels.

It seems that a much greater increase in concreteness is called for to enable description
of further notions. Most of these are then depending on the formalism at hand to such
an extent that attempts at abstract definitions are not likely to be fruitful.

We therefore claim that the two levels considered in this paper suffice to describe general
notions.

36

4. REACTIVITY AND BIAS FREEDOM

There are two concepts, reactivity and bias freedom, that have not been addressed in
either Section 2 or Section 3. The reason is, that they need for their assessment a
combination of the considerations in these sections.

- ------- ·4.1. -R-eaet-iv-ity--

In this section we use the framework developed thus far to investigate the concept of
reactive system as introduced by Hare! and Pnueli in [HP85] .

The point made in [HP85] is, that there are two views of systems.

The first one is the transformational one, regarding programs as functions, or, in the
nondeterministic case, relations between inputs and outputs . Systems that maintain an
ongoing interactive relationship with their environment, however, are hard to describe
in this manner. Even a relation between a sequence of input events and a sequence of
output events may not suffice, for example because the effect of an input may depend
on the output thus far. Such systems are called reactive.

Hare! and Pnueli point out carefully, that certain systems are more amenable to trans
formational description while other ones allow reactive description, rather than stating
that these terms classify systems.

The reason to do so is, that every system can be viewed as transformational and
most of them also as reactive. When observed in enough detail, a system bases its
next move on the current state, thus being transformational. Conversely, as in the
example about sequences mentioned above, as soon as some order information is left
out, transformational description might fail.

Clearly, the level of abstraction at which the system is viewed is crucial. Every system
surely becomes transformational at the machine state level. It is less clear though,
when exactly the view of a system becomes reactive. We investigate and define this
dependency on the level of abstractness more formally.

To decide the reactivity of a system the following notions are required, that can be s~n _ _
as extensions to the features of behaviour considered in Section 2. Behaviour is split
into input and output behaviour at the level of executions.

We define, what kind of extra notions are required, rather than giving concrete ones . In
this way, the definition becomes parameterised by these notions but remains generally
applicable.

(i) A notion to compare inputs using some notion of order-in-time relationship be
tween input and output.

For example, let ... < i,o >< i',o' > ... denote the change over time of input
and output. Then, in an obvious interpretation, input ab differs with respect to
timing in

<a,£>< a, a>< ab,a >< ab,ab >

and

37

<a,<>< ab,< >< ab,a >< ab,ab >

but also in

<a,£>< ab,£ >< ab,b >< ab,ba > .

(ii) A notion to compare inputs with less precise time relationship to outputs.

For example, one could consider the input sequence belonging to a complete
sequence of i/o pairs as input. < ab, * > and < ab, + > with * and + arbitrary
would then be considered to be the same as far as input is concerned.

(iii) A notion to compare outputs-usually, but not necessarily, without a time rela
tion to inputs.

Again, output sequences of complete sequences of i/o pairs could be chosen to
represent output. < *,ab >and < +,ab >would then be considered to be the
same as far as input is concerned.

Definition 4.1.
A system is reactive with respect to some notions (i), (ii) and (iii) of observation like
introduced above if
there are two inputs that

differ according to (i), but do not differ according to (ii)

and lead to outputs that

differ according to (iii).

Remark.
When the level of abstraction of observation is given, a system is either reactive or
transformational.

4.2. Bias freedom

The concept bias freedom intuitively concerns the question in how far a specification
or a behaviour avoids suggesting undesired detail about the implementation. Much of
this ground has already been covered by abstractness notions. Up till now, however,
the only assessment of information content has been in how far descriptions distinguish
programs, i.e., as to how much information is present. Consider the following notion of
bias freedom, introduced by Jones in (Jo86].

Definition 4.2.
A description of behaviour is bias free if
if in the description two states are different
then this difference can be observed via the application of (a sequence of) observation
operators.

We would like to paraphrase this definition to arrive at a slightly more general no
tion:

A semantical object representing behaviour is bias free if
if two states differ
then this is observable.

38

This of course is an informal notion. We investigate which extra notions are required
to provide a formalisation.

Firstly, a notion of state needs to be provided. This belongs to the investigations in
Section 2. Here again a justification as demanded of the notions there is required .

Secondly, a notion of observation needs to be provided . Note, that this in general
will be a much more powerful notion than the one introduced in Section 2. There,
observations were restricted to momentaneous ones. Here, on the contrary, the idea
is that any way in which differences can be observed is admissable. We propose one
intuitive restriction: the observations should only depend on future evolution of the
behaviour from the states that are compared.

Assuming that formal definitions of these notions are provided, the definition is then
formalised .

39

5. COMPARISON OF SPECIFICATION SYSTEMS

In this section we use some of the insights obtained in previous sections to discuss
the aims and solutions presented in (BKP84, 85, 86] and (Ku87]. We also attempt to
compare our solutions to the part of the work by Lamport (cf. (La83a, La83b, La85,
AL88, La89]) that adresses similar topics and has been an inspiration in many ways.

More incidental remarks are made about other approaches, notably those by Nguyen
et aJ (NDG086] and Stark [Sta85, 88].

We make the implicit assumption that temporal logic is a good tool to describe behavi
our, providing a useful level of abstraction to reason about time. More thorough going
defenses of this claim can be found in, e.g., [La83b] and [Pn86].

As it turns out that the aims we can formulate both coincide well with the papers we
wish to introduce as well as involve quite a lot of papers where the other approaches
are concerned it seems most useful to structure the discussion according to the aims.

Some more specific remarks about [BKP84, 85, 86] and [K u87] are made after this.

5.1. General aims and problems

The following aims can be distinguished.

AIM 1. PARALLEL COMPOSITION

There are two obvious changes in representation when going from sequential to parallel
systems.

(i) Points where interference can occur need to be characterised.

(ii) For every interface state change it needs to be modelled which component perfor
med the change.

Lamport presents two contrasting approaches here, namely [La83] and [La85].

In [La83] the basic idea is that actions are labelled by the name of the performer.
Subcomponents are combined via requirements about these actions. The advantage
here is abstractness: only names of subcomponents are added to the observables.

In [La85] the basic idea is, that possible interference points are characterised via pro
gram locations. Subcomponents are then combined via aliasing relations between their
names. The advantage here is independence of future choice of combinators. The de
scriptions of subcomponents can, because of the powerful description mechanism using
locations, be independent of the future environment that the subcomponent has to
function in. All the information with regard to combining subcomponents can be put
into the combinator using aliasing.

In [BKP84] we are quite close to the approach in [La83], but push the abstractness of
the observable state a little further by using a component/environment view introduced
by Jones [Jo81] and Aczel (Ac83]. Recent work by Stirling [Sti88] suggests that this is
precisely the "right" amount of additional information to achieve compositionality and

40

modularity. Further details are given in the discussion [BKP84, 85].

In [NDG086] a very elegant rule for parallel combination of networks of processes is
presented. It comes closest to just intersecting su bspecifications of all the rules we
know. Also the temporal logic used is a simple linear one, although it contains the next
operator.

To achieve these desirable features, a rather strong notion of observation is used. Th-e
main point is, that observations on a port contain the history of all communications via
that port thus far. We feel that this information should really be part of the structure
of behaviour rather than of an observation, but again, this is a matter of balancing
concerns .

All formalisms discussed, with the exception of [BKP86] and [K u87] where this was not
an issue, are modular- in retrospect, it is not so much this property as well as the way
in which it is achieved that is important.

AIM 2. EXPRESSIVENESS AND ABSTRACTNESS

Bearing in mind the justification obligation with respect to the intuition as discussed
in Section 2, we aim for the following modelling ideal.

(i) Observations should be represented by interface states that are valuations of
interface variables.

(ii) Executions should be represented by sequences of interface states, where interface
state changes correspond to changes in interface variables. On the one hand this
implies that any two interface variable changes at different moments in time
(to be defined with respect to the intuition!) give rise to different interface
states. On the other hand this implies that no two identical interface states
occur consecutively- stuttering is not represented ([La83b]).

(iii) Specifications are sets of interface state sequences. If a set contains more than
one sequence, this represents that the specification allows each of these sequences
as execution. Consequently, the satisfaction relation should be set inclusion .

ACHIEVING AIM 2

Unfortunately, differently from the first aim, it proves to be quite difficult to use tem
poral logic to achieve the second aim. We evaluate the problem.

Problem with Aim 2

There are several reasons to deviate from the ideals described in Aim 2. We discuss
the one that seems to be a concern to all that use some form of temporal logic as the
language to write specifications in.

In reality, every next move of a system depends on the current machine state only; this
holds even true for liveness and fairness properties.

This is no longer the case for interface states, where only interface variable values are
present. The choice of interface variables can be made on various grounds, for example

41

that they are shared between component and its environment. It is usually not at all
the case that they are chosen because they represent enough information to decide the
possible move to the next interface state.

The sequence structure is used to compensate for this loss of information.
For liveness and fairness properties this leads to requirements about the sequences that
are easy to formulate in temporal logic. However, to express other structure, for in
stance caused by recursion and hiding, temporal logic is less adequate.

Solutions to the problem

Accepting that temporal operators are not powerful enough to replace certain internal
state information we discuss two solutions, each causing its own complications. We
emphasize, that only sequence structure with regard to interface variables is desired.

1. Incorporate the information in the state via extra variables in such a manner that
these extra variables do not in themselves add more information. The idea is, that
they only serve to express structure requirements regarding the visible ones.

This is the existentially quantified local logical variable approach, as used for exa
mple in [BKP84, 85, 86].
The idea is comparable to the use of y or the first order formula

:ly · x = y 1\ z = y, which is equivalent to x = z .

The term "local" refers to the fact that these variables are allowed to change over
time, in contrast to global logical variables, or freeze variables, that remain the same
during an execution.

2. Allow more internal information in the state via internal variables and change the
satisfaction relation to ignore the internal state information itself. Lamport intro
duced such a solution using state functions to equalise internal state information.

Problem with Solution 1

If temporal logic over a discrete domain is used, the only reasonable way to abstract
away from stuttering seems to be, as Lamport observed [La83b], to allow all finite re
petitions of identified states. In the logic one tries to achieve this through forbidding
the 0 operator .
The problem is, that existential quantification introduces the possibility to make stut
tering matter. Consider the following example, using the until operator U.

S1 :: x=O/\(x=0Ux=1)

s2 .. :Ji 0 (x = 01\ i = 0) 1\ ((x = 01\ i = 0) u (x = 01\ i = 1)) u (x = 1) 0

If i really did not matter, sl and s2 should implement each other, i.e. sl--> s2.
Unfortunately, sl f> s2, as sl allows X= 01\ Ox= 1 and s2 does not.

42

The remedy proposed in [BKP86] is to use dense domains, more detail is given in the
discussion of that paper . A similar solution is presented in [St88].

Problem with Solution 2

Instead of trying to quantify internal variables away, Lamport in [La83b, 89] advocates,
-· in principle, to rein-terpret- the-lower level states in terms of the highe"i' level ones.

Formally: 52 SAT 51 iff
there is for each x at level 1 a state function F,
such that 52 -+ 5J[Fxfx] .

The problem here is, that this requires more difference between states at the lower level
than at the higher ([HW87]) . As the last example showed, this needs not be the case.

The remedy of going to a dense domain does not work here, as the sets of variables are
fixed .

In [AL88] a solution is presented, based on adding extra variables at the lower level to
enforce enough different low level states.

Remark.
It is interesting to notice, that explicit addition of variables at the lower level solves the
problem for the discrete time domain, because it rules out the undesired case of less
states at the lower level than at the higher one. It is clear that this cannot be achieved
with existential quantification as one cannot control where the extra states will occur:
at the desired (low) level or ar the undesired (high) level.

Conversely, the transition to a dense domain does not help in the state function based
approach, as the variables to be connected are explicitly mentioned . Whether they are
available and have the correct values is obviously independent of the time domain.

Remark .
A structured temporal semantics is much more difficult to express in temporal logic
in the "ideal" manner than a specification. The reason is, that the semantics has to
"automatically" construct a formula, whereas in specification is "hand tuned".

Take for example hiding.
The semantics of begin new x; x := y; x := x + 1; y := x end

It seems to leave few other options than something like 3x . Ox = y II O(Ox
x + 111 0(Oy = x)). A specification on the other hand would look like Oy = y + 1.

AIM 3. REPRESENTATION OF CHOICE IN LINEAR TIME TEMPORAL LOGIC

This aim is of less fundamental nature than the other two . The idea was to see how
far linear temporal logic could be pushed to represent choice without having to extend
the interface to represent choice options . This is the subject of [Ku87].

43

5.3. Discussion of [BKP84, 85, 86] and [Ku87]

5.2.1. [BKP84]

In this paper, a behaviour, specification and proof structure are presented for a shared
variable language with recursion. As it also forms the basis for [BKP85], we discuss
the contents in some detail.

The main aim was to provide a compositional specification structure using temporal
logic-it even turned out to be modular in the strongest sense as defined in Section 3.

The main ideas in the paper are the following .

(i) Modularity

(a) At the time of writing this paper, it was not universally understood whether
temporal logic is endogeneous or exogeneous, i.e., whether formulae always
apply to one global program or not. It was later realised, that temporal
formulae as such are endogeneous but can be coupled to programs by just
adding this extra information to the formal language. This is the same idea
as the extension of first order formulae to Hoare formulae.

We use the notation { S} ¢> to indicate formally that a program S satisfies
a (temporal) formula¢>. The link with Hoare's notation, {p} S {q} is, that
temporal formulae have an inbuild notion of time, so that no extra indica
tion of when to evaluate them-like p before, q after execution-is necessary.
{p} S {q} can be written as a formula¢>= (at S & p)-> D(after S _, q) .
This idea is , of course, not sufficient to obtain modularity or even compo
sitionality. As pointed out in Section 3, information content and the form
in which the information is defined determine that property. However , the
coupling of formulae to components is a crucial prerequisite.

It appears that, as mentioned in [La85], Abrahamson was the first to use
temporal logic in this manner (cf. [Ab80]). Lamport couples formulae to
programs already, in a rather informal way, in [La83], but as far as we know
did not incorporate this in a formal language. This informal coupling is still
used quite often.

(b) To obtain modularity, there are two rather different approaches available . A
component can be viewed in isolation; enough information to construct its
behaviour when combined with other components should then be provided.
The other option is, to give the behaviour of a component with respect to some
general environment, including as much information about this environment
as can without loss of generality of abstractness be defined.

To achieve this, we follow Jones's ([Jo81]) component/environment view of
concurrent shared variable computations. The idea is, to model the behaviour
of a component as sequences of states that record the values of its observable
variables in all possible environments, from the viewpoint of that component .
We then use the model provided by Aczel ([Ac83]) for this approach. The
important feature of this model is that it incorporates the "viewpoint" idea
by including all possible changes in the sequences, but adding to all transiti
ons labels indicating who caused the change. To not mention more about the

44

environment than is allowable with respect to both abstractness and modula
rity, label information is restricted to two possibilities: component action or
environment action.

(c) To give the behaviour structure as well as the rules in the proof structure
we use label predicates as parameters in the temporal formulae (cf. [BK83]).
The~epararneters are then manij}ulated to reflect the chang·e in viewpoint
that constitutes the combination of subcomponents into a larger component.

We feel that in retrospect the main contribution of [BKP84]lays in the way that Aczel's
model has been formalised using temporal logic.

Al though we were mainly inspired by this model, the idea of describing components by
temporal formulae that also contain information about the environment was already
present in [La83]. There, however, environment behaviour was not grouped together
under environment action predicates nor were these used as parameters .

To some extent unwittingly, we formulated the rules in such a manner that the ob
jective of simple combination as mentioned above was served . When as much general
information about the environment that is available is incorporated in the definition of
a subcomponent, combination rules can be simple.

For example, the fact that the parallel combinator is fair with respect to progress of
subcomponents could be expressed by adding a fairness requirement in the definitions
and rules for parallel combination. However, in [BKP84], this is already incorporated
in the description of the subcomponents by only allowing finitely many environment
steps before, e .g., an assignment statement is executed . The price to be paid for this
simplicity, as Lamport observed in [La85], is that making changes to the language,
e.g. , adding an unfair cobegin , may necessitate changes to the definitions of other
components and combinators . This is, however, not so much an inherent feature of
this approach ; one could equally well leave the fairness requirement out at the linear
subcomponent stage and include it in the parallel combinator.

Another instance of aiming for simplification is the introduction of the chop operator
to handle sequential composition and iteration. As explained in [BKP84], this is not
necessary-careful use of labels can achieve the same result.

(ii) Abstractness

(a) As to observations. Existential quantification is used to describe hiding of
variables in the definition of the behaviour structure .

Although it is nice that it is possible to be abstract, it would be wrong to write
specifications that are de jure bias free and abstract but not de facto: in terms
of suggesting implementations it does not make much difference whether or
not variables are quantified away.

Luckily, recursion forced us to extend the logic with a fixed point operator
with respect to the implication ordering on formulae . This operator enables
to avoid use of quantification in most cases, at least in specifications . A topic
of further research is to find syntactical constraints on the use of quantified
variables.

45

(b) As to executions. Abstractness with respect to stuttering is present to only
a limited extent. Environment activity is generally handled in an abstract
manner by avoiding the 0 operator. This operator, however, is used to indi
cate the moment of change through component activity. This is not desirable,
both because of loss of abstractness and because further refinement now re
quires action refinement of one action into more. In [BKP86] we investigate
this problem further.

5.2.2. [BKP85]

At the end of [BKP84] an attempt was made to cover synchronised communication.
This was not very satisfactory-for instance, associativity did not hold. Here a more
thorough assessment of this problem is given. The main purpose of this paper is to
show the following:

(i) In the standard linear time logic approach alternative communication options can,
but also need to be represented in the observables, e.g., as ready sets.

(ii) The same problems with respect to abstractness as occur with these sets in the
traditional safety models (cf. [Ho85], [He88]) occur again with essentially the
same solutions-we choose saturation of readiness sets .

In the paper a rather non-abstract use is made of these sets as they are added to each
observation. The motivation is, that this eases the formulation of different fairness
assumptions . Later it became clear to us, that full abstractness of a semantics is in
fact relative to fairness assumptions. Of course, this is to be expected as behaviour in
contexts depends on these assumptions.

5.2 .3. [BKP86]

As mentioned before, the framework in [BKP84], and hence similarly in [DKP85], is
not abstract with respect to, essentially, stepcounting.

A solution is presented, changing from discrete time domains to dense ones. The reals
are used, but the treatment goes through for any dense domain .

Referring to the example in 5.1, the problem was that some intuitively equivalent
specifications put different lower bounds on the number of states between two particular
states.

The essence of the solution is, that in dense time domains, as soon as there are two
timepoints, there are also infinitely many in between, so no lower bound is possible and
the problem disappears .

An important feature is, that because the domain is dense, an additional notion of finite
variability is necessary to exclude the possibility of infinitely many computation steps
in finite time. The idea is, that this can be avoided by demanding that all variables,
be they program or logical ones, do no change infinitely often in finite time.

The treatment does not make the extension to modular formalisms as in the previous
papers . In principle this seems to be possible; it is the subject of further research .

46

A similar model can be found in (Sta88]. There some extension towards a compositional
formalism is made, but the proof rule provided is not complete. In our opinion a
complete proof rule for this model could be given using either the approach [AL88] or
quantification over local logical variables. Further investigations into abstract semantics
given by temporal logics can be found in [Fi87].

There are two puzzling things left:

(i) The use of a dense domain is unsatisfactory in the following sense. As explained
in [BKP86], dense time allows infinitely many state changes in finite time. This is
incorrect for the discrete value domains that we describe. Therefore an additional
restriction, finite variability has to be imposed on the behaviour of variables .

This is unfortunate: the time domain has properties that one does not want to
use to the full. It would be more satisfactory, if the time domain could be chosen
as to not enable one to express such properties.

The question is, is there a time domain that, combined with existential quantifi
cation gives the right expressive power without extra restrictions?

(ii) Intuitively, one would expect that a concrete value domain would fit well with
a concrete time domain. Namely, changes are what determines timepoints, and
changes are discrete.

The situation seems not to be this simple, as the problems with discrete domains
show.

One answer might be found in the direction that the existential quantification over
infinitely many variables somehow destroys the discreteness of the domain .

Alternatively, maybe the conclusion form these remarks has to be that a discrete do
main plus state functions as proposed in [AL88] is the natural framework.

5.2.4. [Ku87]

In the discussion of [BKP85] it was mentioned that choice alternatives were represented
via readiness-sets. As mentioned in Section 2, we do not consider this a very well
justifiable complication of observations.

A better alternative would, in our opinion, be to incorporate the choice information
in the structure of the behaviour, e.g., as branching structure. The obvious solution
would be to use branching time temporal logic. We consider this the best approach,
but it is very rigorous in that the logic framework changes completely. This in fact is
the subject of current investigations.

In (Ku87] we show, that linear time temporal logic can be used, pressing it to the li
mits of its expressiveness, to describe a less complicated form of alternatives: required
nondeterministic choice (cf. [Fr77]) . The idea is, that is should be possible in specifi
cations to state that if some alternatives are described in the specification, then it is
not allowed to implement only a subset of these .

To achieve this, we change the notion of specification and satisfaction rather than the

47

logic. Intuitively speaking, rather than only specifying one set of sequences as an upper
bound to the allowed ones , we also specify a lower bound.

This gives rise to a problem with development : Lower bounds do not allow any non
determinism for not yet mentioned variables. This problem is solved via a judicious
use of hiding. The specification language thus obtained is clearly more expressive than
the one from [BKP84]. It is possible to add the abstraction made in [BKP86] to this
formalism , as this is a completely orthogonal change.

48

ACKNOWLEDGEMENTS

This work has much benefitted from the interaction with members of the TEMPLE
group at Manchester University, members of the Theoretical Computer Science group
at Eindhoven University of Technology and students at Eindhoven University of Tech
nology. More in particular, the formalisation of the notion of reactive system was
developea- togetner with Kees·-n-u.tztrtg; Eduard Diepstraten was instrumental in1lnder
standing the role of state function and existential quantification over logical variables
and Antonio Cau provided much of the information about [Sta85] . I thank Anita
Klooster for her excellent typing.

49

REFERENCES

[AL88] Abadi, M., Lamport, L., The Existence of Refinement Mappings , 3rd IEEE
Symposium on Logic in Computer Science, pp. 165-175, 1988.

[Ab80] Abrahamson, K.M., Decidability and Expressiveness of Logics of processes,
Ph .D. Thesis, issued as Technical Report No. 80-08-01, Dept. of Camp. Sci.,
Univ. of Washington, 1980.

[Ac83J Aczel, P., Semantics for a proof rule by C. B. Jones, Unpublished note, Univer
sity of Manchester, 1983.

[Ap81] Apt, K.R., Ten years of Hoare's logic: a survey Part I, ACM TOPLAS 3, pp.
431-483, 1981.

[BK83] Barringer, H., Kuiper, R., Towards the Hierarchical Temporal Logic Specifi
cation of Concurrent Systems, The Analysis of Concurent Systems, Cambridge,
(B.T. Denvir et al eds.), LNCS 207, pp. 157-184, 1984.

[BKP84] Barringer, H., Kuiper, R., Pnueli, A., Now You May Compose Temporal
Logic Specifications, 16th ACM Symposium on the Theory of Computing, pp.
51-63, 1984.

[BKP85] Barringer, H., Kuiper, R., Pnueli, A., A Compositional Temporal Approach
to a CSP-like Language, IFIP Formal Models in Programming, (E.J. Neuhold,
G. Chroust eds.), Elsevier, pp. 207-227, 1985.

[BKP86] Barringer,H., Kuiper, R., Pnueli, A., A Really Abstract Concurrent Model
and its Temporal Logic, 13th ACM-Symposium on Principles of Programming
Languages, pp. 173-183, 1986.

[Da80J Dalen, D. van, Logic and Structure, Springer, 1980.

[Fi87] Fisher, M.D., Temporal Logics for Abstract Semantics, Ph. D. Thesis, Univ.
of Manchester, 1987, also UNCS-87-12-4.

[Fr77] Francez, N ., A Case for a Forward Predicate Transformer, In f. Proc. Letters
IEEE 6:6, 1977.

[HGR87] Huizing, C., Gerth, R., Roever, W .P. de, Full Abstraction of a Real-Time
Denotational Semantics for an OCCAM-like Language, 14th ACM-Symposium
on Principles of Programming Languages, pp . 223-238, 1987.

[HP85] Hare!, D., Pnueli, A., On the Development of Reactive Systems, Logic and
Models of Concurrent Systems (NATO ASI Series, Vol. 133, K.R. Apt, ed.),
Springer, 1985, pp . 447-498.

[Ha87] Hare!, D., Statecharts: A Visual Approach to Complex Systems, Science of
Computer Programming, Vol. 8-3, pp. 231-274, 1987.

[He88] Hennessy, M.S., Algebraic Theory of Processes, MIT Press, 1988.

[HW87] Herlihy, M.P., Wing, J.M., Axioms for concurrent objects, 14th ACM-Symposium
on Principles of Programming Languages, pp . 13-26, 1987.

50

[Ho85] Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall, 1985.

[HR86] Hooman, J., Roever, W.P. de, The Quest goes on: a survey of proof systems
for partial correctness of CSP, Current Trends in Concurrency, LN CS 224, pp .
343-395, 1986.

[Jo81] Jon~ C .B.~velopment Methods for Computer programs Including a_ Notion
of Interference, D. Phil. Thesis, Oxford, Tech. Monograph PRG-25, June 1981.

[Jo86] Jones, C.B., Systematic Software Development Using VDM, Prentice-Hall,
1986.

[Ku87] Kuiper, R., Enforcing Nondeterminism via Linear Time Temporal Logic Spe
cifications using Hiding, Proc. of the Colloquium on Temporal Logic and Spe
cification, Altrincham, 1987, (H . Barringer, B. Banieqbal, A. Pnueli eds.) . To
appear in LNCS, 1989.

[La83a] Lamport, L., Specifying Concurrent Program Modules, ACM Transactions on
Prog. Logic and Sys. 5.2, pp. 190-222, 1983.

[La83b] Lamport, 1 ., What Good is Temporal Logic? Information Processing 83,
(R.E. Masoned.), Elsevier, pp. 657-668, 1983.

[La85] Lamport, L., An Axiomatic Semantics of Concurrent Programming Languages,
NATO ASI Series, Vol. F13, Logics and Models of Concurrent Systems, (K.R.
Apt ed.), Springer, pp. 77-122, 1985.

[La89] Lamport, 1., A Simple Approach to Specifying Concurrent Systems, Comm.
ACM, Vol. 32, No. 1, pp. 32-45, 1989.

[NDG086] Nguyen, V., Demers, A., Gries, D., Owicki, S., A model and temporal
proof system for networks of processes, Distributed Computing 1, 1986, pp . 7-
25.

[OD82] O'Donnell, M.J., A Critique of the Foundation of Hoare-style Programming
Logics, Proc. of the Conference on Logics of Programs, Yorktown Heights (D.
Kozen, ed .), LNCS 131, pp. 349~374, 1982.

[Pn86] Pnueli, A., Specification and development of reactive systems, Information
Processing 86, (H .- J. Kugler ed.), North-Holland, pp . 845-858, 1986.

[Pl83] Plotkin , G., An Operational Semantics for CSP, IFIP Conference on the Formal
Description of Programming Concepts II, pp. 199-225, Elsevier, 1983.

[dR85] Roever, W.P. de, The Quest for Compositionality- a survey of assertion-based
proof systems for concurrent programs, Part 1: Concurrency based on shared
variables, IFIP Formal Models in Programming, (E.J . Neuhold, G. Chroust eds.),
Elsevier, pp. 187-205, 1985.

[Sta85] Stark, E .W ., A proof Technique for Rely /Guarantee Properties, 5th Conf
erence on the Foundations of Software Technology and Theoretical Computer
Science, (S.N. Maheshwari ed .), LNCS 206, pp. 369- 391, 1985.

51

[Sta88J Stark, E.W., Proving Entailment between Conceptual State Specifications,
Theoretical Computer Science 56, pp. 135-154, 1988.

[Sti88] Stirling, C., A generalization of Owicki-Gries's Hoare logic for a concurrent
while language, Theoretical Computer Science 85, pp . 347-359, 1988.

[Wi87] Widom, J ., Trace-based network proof systems: Expressiveness and Comple
teness, Ph.D. Thesis 87-833, Cornell University, Ithaca, New York, 1987.

[WGS87] Widom, J., Gries, D., Schneider, F.B., Completeness and incompleteness
of trace-based network proof systems, 14th ACM-Symposium on Principles of
Languages, pp . 27-38, 1987.

[ZBR83] Zwiers, J., Bruin, A. de, Roever, W.P. de, A proof system for partial cor
rectness of Dynamic Networks of Processes, Proc. of the Conference on Logics of
Programs 1983, LNCS 164, pp. 513-527, 1984.

[Zw88] Zwiers, J ., Compositionality, Concurrency and Partial Correctness: Proof the
ories for networks of processes, and their connection, Ph.D. Thesis, Eindhoven
University of Technology, 1988; also as LNCS 321, 1989.

Now You May Compose Temporal Logic Specifi.eations

by

Howard Barringer*, Ruurd Kuiper*

and Amir Pnuelit

Abstract

A compositional temporal logic proof system for the specification and
verification of concurrent programs is presented. Versions of the system
arc developed for shared variables and communication based programming
.languages that include procedures.

1. Introduction

When we review the state of the art in formal specification and
verification of concurrent programs we observe the following situation.

On one hand the formalism of temporal logic is a powerful tool for
expressing and verifying a wide spectrum of properties of concurrent pro
grams. Almost any reasonable property one would like to state and prove
about a program can be handled in TL (temporal logic). See [MPJ.] for a
partial glimpse of the variety of properties that can be expressed, such as
invariance (safety), liveness, precedence, etc.

However, TL ha:~ been severely criticized for being global, non
modular and non-compositional. By that we mean that in order to formu
late and verify a temporal property we must have ~before us the complete
program. The temporal formula reo.sollS about the. globAl state of the pro
gram that includes the values of all the variables as weU as the control

• Univcroity of Manchester, Manchester England.

twcizmanulnsthute of Science, Rehovot, Israel.

53

54

locii in all the concurrent modules. There seemed to be no natural way by
which temporal specifications that were derived separately for programs
P1 and P2 could be combined into a temporal specification for the paral
lel composition P1 II P2. This deficiency was already indicated in [Pn]
where the TL system is described as being endogenou&, i.e. assuming the
complete program.._as fixed context.

Consequently, while the temporal language ?rovides a most use
ful global specification tool, and the temporal system provided rigorous
verification of exi3ting programs, they offered very little support for the
most important activity-that of rigorous systematic development of con
current systems. The current approach in verification systems for sequen
tial programs evaluates proposed formal systems almost solely on the ex
tent of support they give to the activity of modular development. (See for
example [J]).

Spurred by the great success of sequential formal systems such as
[Hl], [D] to provide such a developmental methodology, there has been
.a continuous effort to derive a similar modular and compositional system
for concurrent programs. The first such system was presented in [OGJ
and provided a methodology for proving partial correctness of the shared
variabln model of concurrent syGtems. A considerable time later, a syntax
directed proof system for partial correctness of commurucation- based con
current programs was presented in [AFR]. Since then, additional eiTorts
were made to extend the scope of compositional proof systems to more
than just the class of invariance (safety) properties. Among these eiJorts
we should count [Ll], [H2] and [MSC]. However, in all cases, the class of
properties that can be proved by the suggested compositional proof system
.is restricted.

In this paper we present a compositional system based on TL. The sys
tem will be presented both for the shared variables and the communication
based models of concurrent programs. In a modest sense this may be
viewed as obtailling the best of two worlds, having both a powerful
and expressive language that .can express numerous interesting program
Jli'OJlCI'ties, and a compositional methodology that is conducive to modulal'
t;pecification and verification, and most importantly, supports systematic
development of concurrent programs.

55

2. Temporal Logic Over Labelled Sequences

In this section we introduce the language of temporal · logic that we
propose as the vehicle for expressing program specifications. Since the
emphasize in this paper is on the feasibility of compositional temporal
systems we have adopted a very powerful temporal language and obtain
as a re!;ult simple and intuitive proof rules. The price that is to be paid is
the high complexity of the decision and proof procedures for the powerful
langua~e. In a later section we will indicate how the language can be
restricted at the expense of more complicated; proof rules.

For our maximal temporal language we adopt constructs taken from
several sources, including [MPl], [HKP], [W] and [HMM].

The basic alphabet of the logic language includes lo.cal ~ymbola of the
following types:

P1, P2, · · ·-State Propositions,
E1, E2, · · ·-Edge Propositions,
Y1, Y2 1 ···-Local individual variables.

It also includes as global ~ymbol~:

x1 , x2-Global individual variables.

A temporal formula is built out of atomic formulas which are proposi
tions and predicates applied to terms that are constructed out of individual
variables . To these we may successively apply the boolean connectives,
quantification over global individual variables and the temporal operators
in any order consistent with their arity. The temporal operators that we
use include the following unary operators:

O(next), 0 (always),and <> (sometimes)

and the following binary operators:

U (until), C (chop or combine), Ct (iterated combine).

For simplicity we assume a fixed domain Dover which the individual
variables range, and a fixed interpretation for the predicate and function
sy rnbols over the domain.

A model over this fixed interpretation consists of:

a) A global assignment a to the global individual variables, assigning a
D-value to each variable.

56

b) A nonempty sequence

consist-ing - of- named states -so ,-s1 ;-s 2 , • • • and named transitions
to, t1, t2, · · · connecting them. We allow both finite and infinite se
quences in our .models.

c) A local state interpretation l, assigning to each state s; E u and each
state proposition P a truth value /(s;, P) E { T, F} and to each state
s; and local individual variable y aD-value I(s;, y) ED.

d) A local edge interpretation J, assigning to each transition t, and each
edge proposition E a truth value J(t,, E) E { T, F }.

For a finite sequence u : s0 -+ · · · -+ Bk we define the length of u to
to

be l(u) = k. For an infinite sequence u, l(u) = w the first infinite ordinal.

Given two sequences u1 and u2 we define their concatenation (fusion
in the iermiuolo~y of [HKPJ) Ut o u2 as follows:
If f(ut) = w then u1 o u2 = Ut

If f1t = Bo -+ Bt -+ · · · -+ Bk and U2 -= Bk -+ Bk+l -+ · · •
to tk

then
Ut o f12 = 80 t: Bt -+ · ·' -+ Bk 4 Bk+l -+ '''

Thus if u1 is finite then u 1 o uz is defined only if the last state of Ut

is identical io the first state of Uz.

Given a sequence

U : Bo -+ Bt -+ ' ' '
to

we define u' as a suffix of u, denoted by tl < u if there exists a finite
sequence u", f(u") > 0 such that u = u'' o u'. In the case that l(u") may
also equal 0 we write u' S u.

Given a model M = (a, u, /, J), we define the (truth) value of for
mulas over the alphabet that M interprets. This definition is given induc
tively by usiug some derived models of the form M' =(a, u', I, J). These
mod chi diiTer from 111 only by the sequence u' .

57

Consequently-we assume fixed a, I, J and define the value of a formula
over a sequence u, denoted by rp t,. In the case that we may want to

consider different glo hal assignments we ·Will extend the notation to rp C.
In the following we assume u to be generically given by

0' : Bo -+ Bt -+ ...
to t1

First we define the value of terms. For a given u, these values are
determined either by the global assignment a or by the first state of 0'.

For a global individual variable x

xL = a(x) ED.

l~or a local individual variable y:

ul., =I(so, y) ED.

For a function application j(tt, ... , tm):

where we asBumed a fixed interpretation F1 : Dm -+ D of the proper arity
for each function symbol f. For a sequence u of positive length, we define

Thus, the value ofOt depends on the second state of u.

Next, we define the valuation of atomic formulas: For a predicate
application p(t11 · · ·, tm):

where we assumed a fixed interpretatin Qp : Dm -+ { T, F} for each
predicate symbol p.

58

For a state proposition P:

PI"'= I(so,P) E {T,F}.

For an edge proposition E:

EL ~ J(to,_E)_E { X_,F_}.

In the case that t(u) = 0, there is no to transition and then we define
E L = F for every edge proposition E. AB is implied by .the last two

definitions the evaluation of atomic propositions depend only on the .first
state and transition in 0'. According to [HKP] this classifies our logic as
local.

The valuation of the boolean connectives is obtained by :applying the
connective to the evaluated subformulas, e.g.

The valuation of a quantifier over a global variable z:
I

3 xpC = T iff PI: = 1' for some ci that may differ from a only in a'(x).

Next we consider the evaluation of the temporal operators:

For a sequence u of :positive length, l(u) > 0,

Note that once we allow finite sequences, there are two types of nezt
operators, the existential brand which is the one defined above, and its
dual, a universal nexttime operator. The universal nexttime operator can
be defined by @p =,...._, 0 ,...._, p and would automatically hold true for an
arbitrary p and a singleton sequence 0' '= (so).

opL =Tiff for every suflix sequence rl ~ u, PL, = T.

<> Pl =Tiff there exists a suffix u 1 ~ 0' such that PL, = T.

pUqL =Tiff 3u'' ~ u such that qL, = T and for every u',

u11 < cl ~ u it follows that PL, = T.

5!)

Next, we consider the combine operator C.

pCqL =Tiff u is representable as u=ul orr' such that PL, =qL, =
T.

Note that this is the weak version of the combine operator, sincedn
the case that u is infinite we allow u = ul and then. no rl' is :needed.

The iterated combine is defined by:

pC * q L = T iff Either: a) There exist subsequences <rt , u2, ... , uk, UJt.+ 1

such that u = Ut o. u 2 o · • · o Uft o UJt.+t and PL, = T for

1 ~ i ::; k, ql = T, or
l,.k+I

b) There exist an infinite sequence of subsequences
u1, u2, ... , such that u = O't o u2 o · · · and PL, = T for

every i ~ 1.

Intuitively we may offer the following explanations for the operators:

Op

Op

<>p

is true now if p holds in the next state of the sequence.

holds now if p is true from now on.

holds now if p is guaranteed to hold in some future state of the
sequence.

pUq holds if q is guaranteed to hold in the future and p holds con
tinuously until then.

pCq holds if u can be decomposed into a prefix and a suffix, such that
p holds over the prefix and q holds over the suffix.

pC*q holds if u is decomposeable into a finite or infinite sequence of
subsequences such that q holds over the last subsequence and p
over each of the preceding subsequences.

One of the significant extensions of the temporal system presented
here over the one, say, in [MPl), is the introduction of the edge proposi
tions . As we will :Jce below, the edge propositions are essential in specifying
a module since they distinguish between transitions effected by the module
and those performed by the environment.

(jQ

3. Computations and Specifications of Modules-The Shared
Variables Model

As our first model of a concurrent system we consider a language
in which interaction between parallel components is done via shared vari
ables.

At first, we consider programs without procedures. The syntax of this
subset is given as follows:

Let 1/1, ... , 1fn be a fixed set of program variables. We define Btate
menfs inductively as follows:

II- An assignment u := e, where u E { fll, ... , tfn} and e is an expression
over these variables is a statement.

1> If S1 , 82 are statements then so is 81 ; 52 .

II- If 51, ... , Sm are statements and t1, ... , trn are tests over Yt, ... , lin then

is a (conditional) statement.

m
o t;-. 5;

i-1

II- If 5 is a statem<~nt and t a test, then while t do 5 is a (while) statement.

.. If 81 and 82 are statements then 51 II 52 is a (parallel) statement.

Let 8 be a date in the execution of a statementS. As such it contains a
value ansignment to each variable y;, denoted by Yi(s) that can be extended
to the evaluation of expressions and tests over s, denoted respectively by
c(s) and t(8). In addition, 8 will contain a control component that describes
the location of the execution in the program. Without entering into the
exact form of the control component, we assume that there exists some
operational semantics for the statement S. In particular, this semantics
should define for eacl1 state 8 a set of possible successors under a single
atomic step of the program 5. The only state that has no successors is
one in which all the components of Shave terminated. We refer to such a
state as terminal. The fact that a state is terminal is indicated solely by
the value of its control component and is independent of the values of the
program variable8 in that state.

The state a may contain assignment of values to variables not appear
ing in 8 as well as control components belonging to other processes. In that

Gl

cane any action of S must preserve all these values which are inaccessible
to S. We refer therefore to s as an extended state of S.

Consider the following labelled sequence:

>-o X1 (] : So __.. Bt __.. s2 __.. • • •

where:

L Each n; is an extended state of S.

2. The labels >..;, i = 0, 1, ... may only assume one of the two values E,
II.

3.
I1

Whenever Bi -.. Bi+b then Bi+l is an S-successor of s;. This is
considered to be a step of the statement S.

4. E
Whenevc~r Bi-.. Si+t. at least the control component corresponding to
S i:.~ identical ins; and Bi+l· This is considered to be a step performed
by the environment.

5. The sequence u is finite iff its last state is terminal for S.

We con:Jider o· to be an execution sequence in which atomic actions of
S, labelled by II, are arbitrarily interleaved by actions of an environment
labelled by E. Environment actioru; may change the values of all the
variables except for the control component for S.

A sequence satisfying these conditions is called a II computation of
s.

The sequence u can easily be extended to a model M
for temporal formulas as follows:

Tn.ke a to be an arbitrary global assignment.
The sequence u i:; the !jiven sequence.
For a state s we define I(s, !Jj) Y;(s), for j = 1, ... , n.

(a,u,I,J)

For a transition t;, labelled by A; E { E, II} we define J(t;, II) - T iff
>..; II. For other edge propositions we define J arbitrarily.

With this deHnition we may interpret temporal formulas over M. We
refer to M as a II model corresponding to S. Note that we may regard
the label E as an abbreviation for ,....,. H.

Let 'P = p(ll) be a temporal formula whose only edge proposition is
II.

62

We say that S aatiafiea '{) (alternately, '{) is a specification for S) if
all II models corresponding to S satisfy 'P· We write { S }'P to denote this
fact. As an example for these concepts consider the following two modules
(statements):

S1 :: 111 := 1

s'.! :: when !/1 = 1 do !/2 := 1.

(this statement is equivalent to while y1 ::1: 1 do skip; 112 := 1). A valid
specification for sl is:

IPt(II): <>[(Ill= 1) A o(II::>(Yt =Oui))J.

It states that under any II computation of St there will be an instant in
which y1 = 1 and such that S1 will never again change the value of y1 .

Note that this still allows the environment to arbitrarily change 111 both
before and after S1 assigns it the value 1.

A valid specification for S2 is:

IPz(II): <>[(Ill = 1) A o(E=>(llt =Out))] ::> <>(112 = 1).

That is, if the environment guarantees that 111 will eventually assume
the value 1 and that the environment will never again modify the value of
y1 , then y2 is guaranteed to assume the value 1. We use here again the
abbreviation of E for ,..._, II.

Proof Rules for the Satisfaction Relation

Followi:ug, we present several rules that illustrate the basic approach
for building a proof incrementally.

The first rule is the consequence rule that allows us to adopt as a valid
specification any formuJa that follows logically from a valid specification.

(CONS):

1-{S}IP
!- IP ::> tP

1- { s }t/1

The following rules correspond each to one of the rules for the con
struction of ntatements:

The assignment axiom:

(ASGN):
1- { u := e }[(E) U (II 1\ Pv =yo [u +- e])

1\0(E U fin))]

63

The assignment axiom states that a proper execution of the assignment
u := e must always be describable as follows: it starts with a finite
sequence of E steps followed by a single II step. This II step is such
that the fJ variables niter the assignment equal their values before the
assignment with the difference that the value of e is substituted for u.
The n Gtep is followed by a finite sequence of E steps. The predicate fin
is an abbreviation for@ false which is true for the last state in a sequence.
In subsequent rules we will abbreviate Ell fin by E*.

The last two rules may be used together with some temporal reasoning
to derive the specification rp 1 for the statement 81 .shown above.

The following rule corresponds to the construction of a statement by
concatenating two smaller statements:

(CONC):
f- { 8; }cp; for i = 1, 2

1- { 81 i 82} [IPt Ccp2]

To argue for the soundness of this rule, let cp; be a valid specification
for S;, i = 1, 2. Let G' be an execution sequence of 81; 82. Then G' must
be representable as G' = G't o G'2 where G't is an execution of 81 and G'2 an
execution of S2. The case that G't is infinite due to divergence of 81 is also
included. lly the validity of 'Pl, rp2, G't satisfies 'Pl and G'2 satisfies IP2 and
hence CJ must satisfy rp1C'P2·

Let us introduce the following abbreviation:

m

EP(ut, ... ,um) = (E=> 1\ [u; =Qu;])
i=l

Its meaning is that if the current step is an environment step then
it preserves the values of the variables u1 , ... , Um. Symmetrically
P P(u1 , ... , un.) means that the proce:.;s preserves these values.

64

Let us illustrate the application of the CONC rule in order to establish
the specification lfJ2 for the module s2 above.

1. f- {while Y1 ~ 1 do skip}[<> [(Yl = 1) 1\ oEP(y!)] J <>fin]

This statement says that if the environment promises to eventually
set Vl to 1 and never modify Yl again, the loop is guaranteed to terminate.
Its derivation must be done using the while rule below.

2. f- {Y2 := 1}[<>(Y2 = 1))

This specification can be derived using the ASGN axiOm and the
CONS rule.

3. f- {Sz }[(<>[(Yl = 1) 1\ oEP(y!)]J <>fin) C (<>(Y2 = 1))]

By the CONC rule applied to 1,2.

4. f- (<> [(Yl = 1) 1\ oEP(y!)]J <> fin)C(<>(yz = 1)) J
[<>[(Yl = 1) 1\ oEP(y!)]J <>(yz = 1)]

This is a pure temporal logic statement and should be provable in an
appropriate proof system for the temporal language we consider. We will
not discuss the details of such a proof system here. A proof system for the
language that does not include the C operator is provided in [MP3] and
its extension to include this operator is under process.

To justify the statement semantically, we observe that it has the
general form equivalent to:

([(PJ <>fin) C (<> q)]l\p) 2 <> q.

Consider a sequence u that satisfies both (p J <>fin) C (<> q) and p.
Then either it is an infinite sequence that satisfies PJ <>fin and p, or it
is representable as u = u 1 o uz where u1 is finite and uz satisfies <> q.
The first case is impossible since no infinite sequence can satisfy <>fin.
Hence <> q holds in a suilix of u, consequently <> q holds in u.

Applying the CONS rule to 3 and 4 we obtain

5. f- { Sz }lfJ2

Next we conuider a rule for the conditional statement. Let S be the
process defined by

m
S ·· o (ti --+ Si)·

i=l

G5

Introduce the abbreviation:

test (p) = n t\ p t\ [0 17 = 17]

It describes a step done by the process. in which the predicate p evaluates
to T and all the values of the variables are preserved.

We make here the simplifying assumption of ezhauativeneaa by which
for every y, 1- V~''::. 1 t;(y). This implies that there is always a branch that
can be Laken. The more general case will be considered later.

Then we have the rule:

(COND):
1- { Si}cp; for i = 1, ... , m

1- { 0~1 t; --4 S; }[(E) U (V';:_1 [test (t;) t\Qcp;])]

By this rule the execution of a conditional statement, consists of a
finite preflX of environment steps followed by a successful testing step for
some i followed by the execution of S;.

The next type of statement to be considered is the while statement.

(LOOP): l
r- { s }cp ~I
-1--{~w_:_h_ile-t-do_S_}-[(-(E_)_U_[-te-st-(-t)_t_Q_cp_])_C*

((E) U (test(""' t) t\QE*))]

Thus if cp is a valid specification for the loop's body S, then every u, an
execution of the while statement must be representable as u = u1 o u2 • • •.

Let { u;, i = 1, 2, ... } be the finite or infinite sequence of subsequences
into which u decomposes. Then, the above rule allows several possibilities.
The first is that { u;} is infinite and each u;, i = 1, 2, ... is finite and
satisfies p: (E)U [test (t)/\Oif.']. This implies that each u; consists of a finite
prefix of E steps, followed by a successful t test, followed by a finite suffix
that satisfieG cp. This corresponds to an execution of the while statement
in which the loop never terminated but each execution of the body was
finite.

The second possibility is that there are only finitely many subse
quences, u17 ... , u m+l all of which satisfy <p such that each of o-1 , ... , Um

66

is finite and e1 m+l is infinite. This corresponds to an execution of the while
statement that iterated m+ 1 times and them+ 1'st execution of the body
diverges.

The last possibility is that there arc m + 1 subsequences
o-1 , .. . , _Q"m+-1 (m 2:Jl),__!!.ll of w]l.ic_h_are _fi_I;lite,_§uchJhat C!l, .•• ,_u m !atisfy_
tp and u m+ 1 satisfies (E)U(test (,..._, t) 1\0 E*). Thus O"m+l contains a failed
t test and a finite suffix of E-steps. This corresponds to the case that the
execution of the loop terminated. Note that, by the definition of C* we
also allow the case of m = 0 in which the loop terminated immediately.

We may use now the LOOP rule in order to derive the specification
for the waiting loop in 82 • This is done as follows:

1. f- { a kip}[0 P P(yt) 1\ <> fin]

This can be c.lerived by a combination of ASGN and CONS. It ensures
that every execution of skip is finite and each process step in it preserves
!Jl 0

2. 1- {while Yt rf 1 do akip}[(oPP(tli) 1\ <>(tl1 rf 1) 1\ <>fin) C*
(<>fin)]

This is derivable from 1 by the LOOP and CONS rules and some
temporal reasoning. We have used in particular the obvious implication
E V test(t):) PP(tld·

3. f-[(oPP(yt)A<>(Y1 ~1)A<>fin)C*(<>fin)J:)
[<>finV(O(""' fini\PP(yt))A D<>(tlt rf 1))]

This is a true temporal logic statement. It implies that a sequence
satisfying the C* formula can be infinite only if til rf 1 i.nfin.itely many
times.

4. f- <> ((Vt = 1) 1\ o EP(t~d) :) ""' [0("' fin A P P(tlt)) 1\
0 <>(Yt ~ 1)]

This statement says that the promise of the environment to eventually
set y1 to 1 and never again modify its value is inconsistent with an infinite
sequence in which infinitely many times t11 rf 1 and the process does not
modify y1 ei ther .

We may now combine 2,3 and 4 to obtain

5. f- {while !11 ~ 1 do skip }[<>((tit = 1) 1\ oEP(vt)) :) <>fin]

67

Considering the expression of a potentially infinite loop by the C*
operator as it appears in the LOOP rule, we may propose the following
rule ror the more general case of the conditional statement. In this rule
we no longer assume exhaustivity of the branch conditions.

(GCOND):
f- { Si}cp; fori= 1, ... , m

f- { Oi'!.t t; -+ S; }[pC*q]

where: p is (E)U(test(A:, 1 ,....._ t;))
and q is (E)U(V';:.. 1 [test(t;) 1\0cp;])

Thus, the successful execution of the conditional statement may be
preceded by a finite or infinite number of unsuccessful attempts in which
all the tests failed.

The last rule in our system is the one for parallel composition. It must
be realized that the added complication of introducing edge labels and the
distinction between E and II transitions were all done in preparation for
the parallel composition .

(PAR):
A. 1- { Si}cp; ror i = 1, 2
B. f- [(o""' (lit 1\ liz)) 1\ o <>(lit V llz V fin) 1\

(cpt(II!)) C (0(,._, ITt)) 1\ (cpz(llz)) C (0(,._, llz))] :::) cp(flt V Ilz)

f- { Sr II Sz }cp

The parallel rule contains two premises. The first premise simply
states that cp; is a valid specification for S;.

The second premise considers a sequence u that satisfies four require
ments. The first requirement is that the edge propositions II 1 and Ilz are
exclusive, i.e. never jointly true on the same edge.

The second requirement, 0 <>(fit V liz V fin), allows u to be infinite
only if there are infinitely many transitions which are either llt or liz
transitions.

The third requirement postulates that u is representable as
u = Ut o uz, where uz contains no llt transitions and Ut satisfies IPt(II!).

68

The fourth requirement is a symmetric postulate for tpz and llz.

Under these four conditions, premise B requires that u satisfies tp(llt V
Ilz). In this notation we imply that the only reference to edge propositions
in tp is via the disjuncLion II 1 V llz.

Note that-if tp1 (-ll) referred t0 the envil'onment in statements such as
E =>P!!t = yt), then lfJt (Ilt) contains the clause (,..._,fit):>{:) 111 = yt), that
states the property of preservation for all non TI 1 transitions, including
the II2 transitions. Thus we may interpret tp1 (Tit) as considering TI 2-steps
as environment steps.

The geHeral idea underlying the PAR rule is that any execution of
Bt II S2 can alwayn be viewed both as an S1 execution in which both the
S2 steps and the true environment steps are regarded as environmental,
and symmetrically as an S2 execution in which both the S1 and the E
steps are regarded as environmental.

Indeed, let us argue for the soundness of the rule. Let u be a ll
execution of sl II Sz where we label each non-TI transition by E ="' n.
Assume also that each lfJi is a valid specification for s,, i = 1, 2 and
that premise D holds. It is always possible to additionally label each ll
transition in u by Tit or llz according to whether it corresponds to an
S1 -step or an S2-ntep in the interleaved execution that is the execution of
3 1 II S2 . This extra labelling obviously satisfies o"' (Tit I\ llz) since each
II step is either a II 1-step or a II2-step but not both.

Next we observe that if there are only finitely many ll1 and II2 steps
then both processes eventually terminate, and hence u must be finite. Thls
shows that u satisfies D <> (II1 V llz V fin).

Next, iL is clear that with the additional labelling u is almost a Tit
execution of St. The a/moat qualifier refers to the possibility that the -
corre:;ponding 81 exec uti on is finite while u is infinite due to a divergent
execution of 8 2 . Thus, at any case, we can always represent u as u =
Ut o cr2 where crt is a <:omplete ITt-execution of S1 and Uz contains no ITt
tr<msiLions. By the assumption that tp1 is a valid S1-specification it follows
that u satisfies (tpi(IIt))C(D(......, lit)).

Uy a fully ~>ymmeLric argument a satisfies also (tpz(llz))C(o(......, llz)).

Dy premise U we <:onclude that u satisfies tp(Il 1 V llz).

Dy recalling that an edge is labelled by II1 or IT2 if! it is labelled by

69

ll we obtain that u also satisfies cp(ll).

Let us use the PAR rule and the previously derived specifications for
St and S2 of our example, in order to derive a specification for 81 II 82.

Let X denote an edge predicate, i.e. ll or ll. Then we define:

Pr(X,u) = [X:::)pu = u]]

This formula states that if the current transition is an X-transition, it
preserves the values of the variables U.

1. f- { St }[<>((!It = 1) A OPr(ll, 11t))]

Tbis specification for 81 was derived earlier.

2. f- {S2 }[<>((!It= 1) A oPr("' ll,111)):::) <>(112 = 1)]

Previously derived.

3. f- { o""' (llt V ll2) A 0 <>(llt V ll2 V fin) A
(<>((!It= 1)A oPr(llt,11d)C(o("'llt))A
[<> ((yt = 1) A OPr(,.._..fl2, 111)):::) <>(112 = 1)] C (0("-' ll2))} :::)

[DPr("' (I1t V I12), yt):::) <>(112 = 1)]

This is a pure temporal logic statement. To argue for its validity
consider a (I11 , fh) sequence u that satisfies all the antecedents of the
implication and also oPr("' (ll 1 V ll2), yt).By the third antecedent even
tually !It = 1 and henceforth oPr(I1t,Yd· By oPr("' I1tA "'I12.111) it
follows that from that instant on we actually have oPr(""' ll2 , 111) . By the
fourth anLecedent, these two conditions imply that eventually 112 = 1. We
conclude that u satisfies <>(112 = 1).

4. f- { St II s'}. }[oPr("-' n, 11t):J <>(Y2 = 1)]

By the PAH rule applied to 1,2 and 3.

This establishes a specification for St II S2 by which if the environ
ment promises not to tamper with !/1, Sr II s2 guarantees to set 112 to
1.

4. Comments Regarding Soundness and Completeness of the
System

The t~oundncss of the system we have presented was considered for
each rule as it was introduced. In this section we consider the complete-

70

ness of the system. First, we show that our temporal language is powerful
enough to express in closed form the temporal semantics of each statement
of our programming language. Similar approaches for unstructured com
put~Lional models are considered in [Pn] and [MP2]. For each statementS
we define ~p(l1) = M[S], the temporal semantics of S, which is a temporal
fu rmul.a :with-one-fr-ee edge proposition, -n. The meaning-of ,Pis that a 11
sequence satisfies y:>(l1) iii it is an execution sequence of S. Following is the
inductive definition of)It [S] for the different types of statements, where
we abbreviate ,..._,II to E.

N [u := e] = (E) U [II A Oll = fJ a [u +--- e]) AOE*]

M[St;Sz] = (.M[St])C(.M[Sz])

Fol' au exhaustive conditional:

}11[o}~ 1 t;-+S;] = (E)U(V~::_ 1 [tcBt(ti)AO.M[S;])
}11[whilc t do S] = pC*q

whel'e

JJ = (E)U [tcat(t) AO M [SIJ, and

q = (E)U[test(,.._, t) AOE*]

J.t!S1 II S2] = 3llt, n2 ·[o((II = n1 v n2)A,...., (Tit A n2)) A o <>(n v fin) 1\

(.M[St](IIt))C(o(~ Tit)) 1\ (.M[S2)(TI2))C(o(~ TI2))]

In the last definition we extended our ~emporallanguage even further,
by allowing quantification over edge propositions. A proper definition of
the !lemantics of this r:onGLruct is straightforward. Such contltructs are
allowed and considered in [W].

It is now a simple matter to com;ider each of the rules and show, by
induction on the structure of a statement S, that for each statement S
the following is provable in our system:

1-- { S }[M[S]]

Ld now 1p be auy npecification valid for the statement S. By the definition
of the semantics of S, any sequence satisfying M [SJ is an execution of S

71

and hence satisfies tp. Thus, the implication .M [S] :::> tp is semantically valid
over all sequences. If we accept all semantically valid purely temporal
formulas as axioms then trivially:

1- .M [S] ::>tp

We may now usc the CONS rule to obtain that { S }tp is provable relative
to the theory of pure temporal logic. This gives us the desired relative
completeness result.

5. Is This the Best that Can be Done?

As we have repeatedly emphasized, this paper presents but a prelimi
nary version of a compositional temporal proof system, intended mainly
to demonstrate that such approach is feasible. In constructing the sys
tem presented here we encountered several design choices that we have
decided to resolve in a certain way. In this section we consider some of
the alternatives.

One tmch choice involved the issue whether we should allow both finite
and infinite executions or force all executions to be infinite, as is done
for example in [MPl]. The first alternative, that we have adopted here,
simplific:; Llw t;equential compm;ition rules such as CONC, COND and
LOOP but complicatct; the parallel composition rule PAR. If we would
have forced all executions to be infinite by extending finite ones by an
infinite tail of E steps, we can get the following simpler PAR rule:

(PAR-II):
f- { S;}t,ai for i = 1, 2
J-=--[0"" (llt/\llz)/\tpt(IIl)/\tpz(Ilz)] :::> tp(Ilt VI]z)

f- { St II Sz}tp
'--------

On the other hand the concatenation rule would have a form some
what like the followin~:

--·-----··-------------------------,
(CONC-H):

f- f si ll,?j for i = 1, 2
l=J'pt(Ut) 1\ ('"" Ilz 1\ <>Tit) U(t,az(Ilz) 1\ D'"" Ill)] :::> tp(Ilt V liz)

1- { St; Sz}t,a

72

In this rule we use the unlesa operator U which is the weaker version
of the until operator ll. In this ruJe we consider a :sequential composition
to be a special case of the parallel composition in which we require all the
0 1 transitions, corresponding to S1 steps, to precede all the lh transitions.
The case that St never terminates is also considered. Note that in this

- version-we---d:o--rrotneed tlre -e-o]J~rator and can us-e instead the U operator.

Another issue that we had to consider is whether to use at all the
C operator and the heavier C* operator. As is observed in [IIMM], the
C oper;•.tor (not to mention C*) can greatly increase the complexity of
the uecision procedure where one exists, and in general complicate the
proof procedure. Consequently, one may look for rules which use simpler
operator:.;. One ouch rule was given above for concatenation where we
replaceu the C operator by U. Another example is a loop rule in which we
replace C* by C and introduce auxiliary edge propositions.

(LOOP-I!):

1- { S }101

f-- [Cli'.J (lit 1\ ll2) 1\ D Pr(fit, 17) 1\ ["" (fit V ll2)]l1 Tit A
o(Ilt 1\ t :> O[(ID'(llz))C(lh)]) 1\
o(lltA~t:)Q[("'(IIt vn2))Zl/in])]:) ~C>(llt vn2)

f- {while t do S }ID

In this rule we labelled the tests by fit and the executions of the loop's
body by fi2·

Jt is obvious that many difJerent versions of similar systems can be
constructed according to different design decisions. Only time and ex
perience in applying thcne sysLeVls can point out the relative advantages
of one :.;yslem in comparison to the others.

6. Adding Procedures

\Ve ~ketch now ti.Jc addition:; and extensions that are needed in order
to allov,r in our prograunning language procedures, recursion and blocks.

We ::;tart with a rule for a block or a new variable declaration.

73

(DECL):
t- { S }(oP,(E, u)::::>~) u ~ free(~)

r {begin new u; S end}~

The rule states that if under the assumption that the environment
does not modify u we can obtain that ~ is a valid specification for S
where ~ does not contain u freely, then, unconditionally, ~ is a valid
specification for the statements: (begin new u; S end) . This depends on
the interpretation that since u is not known outside of S no external
environment can modify it. The only modifications to u can come from
within S.

Next we consider the simple case of a single procedure defined by
f(x, y) {:: B where B is a statement, the procedure body, that contains z
andy as free variables. The body may contain instances of procedure calls
'call f(u, v)' . We assume here that the only actual arguments allowed are
simple disjoint variables and that the parameter transfer mechanism is
call by reference .

Let us extend the definitions of the temporal semantics given above
to the temporal :.;emantics under the assumption of ~ for f . Denoted by
.M"" [S], its definition for each type of ntatement excluding a call statement
is identical to that of .M[S]. The definition of the semantics of a call
statement is given by:

.M""[call f(u, u)] = (E)U(~(u, v))

Similarly we can define the notion of '1/J being a valid specification for
S under the assumption of rp for f . This is denoted by { S} ""'1/J. The proof
rules for this construct are identical to the ones presented above with the
addition of:

(CALL):
r {call f(u, v) }'P[(E)U(~(u, u))]

Provability and the semantics under an assumption are connected by
the following rule:

74

(SEM):

We arc ready to formulate the rule for procedure declaration:

,--------------------------~

(PHOC):
{ 1- cp:J.M¥'[8]}::} { 1- cp:J1/J}

f- {.call f where f <= B },P

The premise to the rule is that under the hypothesis cp:J.M¥'[8] we
arc able to deduce cp:Jt/J . We may then conclude that the actual call to f
satisfies '¢ .

The soundness of the ru1e is based on the fact that the semantics
of the recursive definition f <= B is the maximal fixpoint of the temporal
implication: cp:JM¥'[B]. Consequently, if, by the premise, every fixpoint
of this equation implies ,P then in particular the maximal fixpoint implies
it.

We illur.trntc the :;ty le of proof accordillg to these rules by the follow
inu Bimple example (the fadorial function)

f(x, y) <= (tj x = 0 therL y :=I
el8c bcg£n new t;

t :=X- l;
call j(t,y);
y := Y*X

encl)

We wish to prove (under the context of this declaration):

1- {call j(x, y) }[(x =a 2:: 0) A oEP(x, y) :J <>(II= a! A E*)]

The proof proceeds as follows:

I. 1- If.> :J)If v> [JJ] Assumption.
n i:J the body of i!lC procedure declaration.

2. f-~(x,!f)Ax=OA ogP(x,y) ::J <>(y=IAE*)
Dy considering M v> [B] for x = 0.

Next we prove by induction on a ~ 0 that

tp 1\ (z =a~ 0) 1\ oEP(z, y) :) <>(y =a! 1\ E*)

The base for the induction is given in 2.

3. f-[tp/\(x=a~O)AoEP(z,y)]:) <>(y=a!I\E*)
This is the induction hypothesis.

4. _I- {t := z -1}~[(z =a+ 1)/\ oEP(z,y,t) ::::)
<>(t =a 1\ z =a+ 11\ E*)]

By ASGN.

5. 1- {call f(t, y)} ~tp(t, y)
By CALL.

6. 1- {call f(t, y)}~[(t =a) 1\ z =a+ 1 1\ oEP(z, y, t) ::::)
<>(y =a! 1\ z =a+ 1 1\ E*)]

By 3,5 and temporal reasoning.

75

7. 1- { t := x- 1; call j(t, y); 11 := 1/*Z} ~[(z = a+ 1) 1\ oEP(z, y, t) ::::)
<>(y =(a+ 1)! 1\ E*]

By various rules and 4,6.

8. 1-{B}r>[(z=a+l>O)AoEP(z,y)::::) <>(y=(a+1)!AE*)]
By DECL, COND and temporal reasoning.

9. 1- M~[lJ]:J [(x =a+ 1 > 0) 1\ oEP(z, y) :) <>(y =(a+ 1)! 1\ E*)]
By SEM.

10. 1- tp 1\ (x =a+ 1 > 0) 1\ oEP(x,y) ::::) <>(y =(a+ 1)! A E*)
By I :\nd 9.

11. f-tp:J[(x=a~O)/\oEP(x,y)::::) <>(y=a!AE*)]
By induction, based on 2,3-10.

12. 1- {call f(x, y) }[(x =a ~ 0) 1\ oEP(x, y) ::::) <>(y =a!) 1\ E*)]
By PROC 1 and 11. I

In order to prove completeness for the system with procedures we
have to extend the expressibility of the temporal language even further.
Let x(tp) be a temporal formula containing several positive instances of
the (temporal) predicate symbol tp. An instance of a subformula is defined
as positive if it appears under an even number of negations.

76

Consider the implication tp::::) x(tp) which can be regarded as an equa
tion (inequality in fact) for tp. A temporal predicate <P is a solution to
l(.l::::):X(IP) if <l'::::)x(<l>) is a valid statement, holding for all models. It can be
shown that every positive implication cp::::)X(IP) has a maximal solution~
such that <i>::::)x(4'), in fact~= x(~), and it bounds from above any other

--Belu-t-~en-.---±he-laie-r- st-atements mean that every <P that-satisfies <P ::)X(<P)

must also satisfy <P::::) <P.

Tltus the ordering that we use and that underlies the fixpoint theory
of positive implications is the one defined by: 4>!:;;; "1ft{::::} cl>::::)\ft.

Let us denote the maximal fixpoint solution to the positive implication
cp::::) x(cp) by vcp · x(cp). As an example it is not difficult to see that pC*q =
V<p. [q v pCcp].

Fixpoint operators were first introduced to temporal logic in [W],
and the extension made here is to allow an arbitrary positive implication,
removing the restriction to right linear forms which is imposed in [W].

With this e:dension we can give a closed form expression for the
semantics of a procedure call, namely:

.M[call f(x, v) where f {::= B] = Vtp. [tp::::)M'P[BJ]

The relative completeness follows directly.

7. Communication Based Models

In this t;eciiou we consider an appropriate proof theory for a model
of concurrent systems thai is based on explicit communication instead
of shared variables. The basic ideas are similar to these of the shared
variables model but some of the details emphasize the inherent differences
between the models.

The programming language that we study includes the following state
ments: Assir,mnent, Concatention, Parallel and While statements as be
fore . The coiH.litional or selection statement is where communication is
introduced. Let I; = { ct, c2, ... } be a set of channel names. The general
form of a selection statement is:

77

where we have partitioned the set of alternatives into three disjoint sets,
indexed respectively by J(, L, M. Alternatives belonging to J(represent
purely boolean choices. Alternatives belonging to L represent output
guards that are ready to send a value ej along a channel Cj. Alternatives
belonging to M represent input commands that are ready to accept a value
from a channel Cj and store it in Uj. A single input-output command of
the form c!c can always be represented by a single alternative selection
[oc!e--. skip] .

For the definition of the models that represent executions in the
COM language (communication based language) we generalize the labelling
on the transitions from propositions to variables. Thus, we allow edge
variables At, >..2 .. . that are assigned values for each transition ti in the
sequence by the edge interpretation J.

When a model represents an execution sequence of a COM statement
S, there is an edge variable)... that identifies the execution step that occured
at each transition. It may assume the following values: A = II denotes
that the current step is an internal computation step of S. The value
)... = E denotes that the current step is an internal computation step of
the environment, which may not include communication with S. A= c!v
implies that S sent the value v along the channel c.)... = c?v implies that
S recci •red the value v from the channel c.)... = W(k1 , . . . , k,), where each
/c; is either c! or c? for uome c E I;, means that S has tried to communicate
with any channel of the set let, .. . , k, but failed to find a communication
partner.

Since the proof rules are closely connected with the definition of the
temporal semantics, as established by the SEM rule, we will give here only
the temporal semantics for each of the statements .

We abbreviate A= E and)...= II toE and II respectively, and denote
E U fin byE*.

.M[u := e]

M[St; Sz]
M[while t do S]

E U [II 1\ t)y = yo [u .- e]) 1\0E*]

M[Sl] C .M[S2]
[E U (test(t) 1\0.M[S])] C*
[E U (test(""' t) 1\0E*]

Next we consider a selection statement S that has the general form
outlined above. That i~, we distinguish three sets of alternatives, indexed

78

respectively by the sets K, L and M, and denoting the set of alternatives
with purely boolean guards, the set of alternatives with output guards and
the set of alternatives with input guards .

.M[S] = [[Eli[(>.= W(u e1l U u c1?)) 1\ 1\ "'bJ 1\0TJ = yj 1\0finJ
j€-L - - - --- }EM JEK

bi -==frq,e bj='true

C* [Eli{ v (tcBt(b;) 1\0M[SJ]) V
JEK

V (bJ 1\ >. = c,le f\Ofi = lJ AOM[S;l) V
jEL

V (bJ 1\ >- = c1?v f\OTJ =yo [uJ +- v] AOM[SJl)}]
JEM

According to this definition the execution of a selection statement con
sists of a prefix that describes several failed attempts to select an alterna
tive followed by a suffix that describes a successful selection and execution
of an alternative. A failed attempt consists of a >. = W(kt, ... , km) step
where each k;, i = 1, ... , m has the form c? or c! for c E E. It implies
that at that step, all the purely boolean guards evaluated to fal8e, and
the boolean parts of the guards corresponding to k1 , ... , km evaluated to
true. The current attempt at selection is considered to have failed because
110 true purely boolean guard was found and no willing communication
partner matehed the communications that S was ready to participate in.
The possibility of deadlock is represented by an infinite prefix containing
inHnitely many failed attempts. The suffix represents a success in testing a
purely boolean guard, or a successful communication followed by execution
of the corresponding body.

Let k be of the form c! or c?, then 7C denotes the matching communica
tion, i.e., c? or c! respectively. We introduce the following abbreviation:

wait(>., /c)= CO true A <> o((>. =E) V >. = W(kt, ... , k, . .. , km))

This formula states that the sequence is infinite, and from a certain state
on, all the process steps arc failed selection attempts, waiting for several
possibk communicatious one of which is always k. This may be described
as ").. endlessly waiting for k". Of course, it may be waiting for several
di!Iercnt k 's at the same time.

TLe semantics for the parallel statement s : St II s2 is given by:

.M[Sl II S2](> ..) = 3(>.., >..2). {
0[(>. =II):::) !(>.1 = E A >.2 =II) V (>..t =II A >..2 =E)

V 3 c, v[(>.t = clv A >.2 = c?v) V (>..1 = c?v A >.2 = clv)]] A
(>.. =/= 11):::)[(>.1 = E A >.a=>..) V (>..t =>..A >..a= E)]]]

A 0 <> ~ (>. = E) A
[.M[S1](>.x)] C [o(>-1 = E V fin)] A !.M[S2](>..a)] C [0(>.2 = E V fin)]
A~ 3 k[wait (>.1, k) A wait (>..2, k)l}

79

This formula states that a >..-sequence u is an admissible execution
sequence of 81 II 82 iff there exist two additional edge labelling At and >..2
that satisfies a list of conditions. The intended meaning of At and A2 is
that they rellect the local views of the joint execution u as seen by 8t and
82 respectively. The conditions that At, A2, A and u have to satisfy are
the following:

Whenever A= 11, signifying a local transition, it can arise due to one
of the statements 8;, i = 1, 2 taking a local transition while the other takes
an idl e step. Alternately, it can be caused by a matched communication
between 81 and S2 that is externally visible as a local transition. Note
that a communication step is the only step in which both processes are
active at the same time. If A =f 11, this is either an idling step of 8 and
hence of both 81 and 82, or a communication, failed or successful, with
the external world. This is obtained by 8t, or 82 performing this step and
the other idling.

In addition we require that u is infinite only if it has infinitely many
non-idling steps. Then, we require, that u with the At labelling is accept
able as an execution of 8 1 to which we may have added an infinite suffix
of >'l = E steps. Similarly for S2 and >. 2 • Finally we disallow sequences
in which from a certain point on 81 is deadlocked waiting for some com
munications that include k while at the same time 82 is deadlocked wait
intj for k. Any such finite prefix should be eventually resolved by a k - k
communication between 81 and 82.

This laconic description shows that communication based concurrent
t;y::tcms arc also amenable to compositional temporal systems. The addi
tion of proecdurcs can be done in a way that is similar to their introduction
in the previous model.

80

8. Conclusions

In this paper we presented a very preliminary approach that provides
a compositional temporal proof system for concurrent programs. We are
sure that a more careful study of some of the design decisions made here
would probably lead to a more streamlined system w}Jich would be _easier

-----roapp y and use for both the verifi~ation -;nd the systematic development
of concurrent programs.

Several research topics that require immediate attention are a better
understanding of the tradeoffs between the power of the temporal operators
used, the complexity of the proof procedures and the simplicity of the proof
rules. Another very important topic is the incorporation of past operators
into the proof system. In expressions such as pCq, any past operators
embedded in q may only refer to the suffix of the sequence in which q
holds and cannot (unless defined differently) penetrate to the p prefix of
the sequence. It is important to analyze whether this is a limitation or
rather the preferred situation.

The approach presented here combines the expressive power of tem
poral logic for specification of a rich class of properties with the modularity
and compositionality of syntax directed methods.

Acknowledgement
The authors wish to acknowledge the hospitality of the STL/SERC

Concurrency Workshop at Cambridge under whose auspices the initial
ideas of this paper started their germination . The first two authors grate
fully acknowledge support under S.E.R.C. grant GR/C/05670. All of us
wish to thank Carol Weintraub for her excellent and speedy TEXing.

REFERENCES

[AFH.) Apt, K.R., Francez, N., De Roever, W.P., A Proof System for
Communicating Sequential Processes, TOP LAS 2,3(July 1980) pp.
359-385 .

[BK) Barringer, H. and Kuiper, R., A Temporal Logic Specification
Method Supporting Hierarchical Development, Manuscript,
University of Manchester (November 1983).

[D] Dijhtra, E.W., A Discipline of Programming, Prentice Hall (1976).
[Hl] - Hoare, C.A.n.., An Axiomatic Basis for Computer Programming,

CACM t:J 10 (Oct. 1969) pp. 576-580.
[H2] Hoare, C.A.IL, A Calculus of Total Correctness for Communicat

ing Processes, Science of Computer Programming, 1 1 (1981) pp.
1!l-72.

81

[HKP] Hare!, D., Kozen, D. and Parikh, R., Process Logic: Expressiveness,
Decidability and Completeness, JCSS vol. 26 (1982) pp. 144-170.

[HMM] Halpern, J., Manna, Z. and Moszkowski, B., A Hardware
Semantics Based on Temporal Intervals, Automata Languages and

Programming, 10th Colloquium 1983,Lecture Notes in Computer
Science #154, Springer Verlag, pp. 278-291.

[J] Jones, C.B., Specification and Design of (Parallel) Programs,
Proceedings of IFIP,North Holland, Paris (Nov. 1983) pp. 321-332.

[L] Lamport, L., The 'Hoare' Logic of Concurrent Programs, Acta
Informatica 14 (1980) pp. 21-37.

[MCSJ Misra, J., Chandy, K.M. and Smith, T., Proving Safety and Live
ness of Communicating Processes with Examples, Proceeding of
the A CM Conference on the Principles of Distributed Computing,
Ottowa, Canada (Aug. 1982).

[MP1] Manna, Z. and Pnueli, A., Verification of Concurrent Programs:
The Temporal Framework, in the "Correctness Problem in Com
puter Science", ed. R.S. Boyer and J .S. Moore, Academic Press,
London 1982, pp. 215-273.

[MP2] Manna, Z. and Pnueli, A., How to Cook A Temporal Proof System
for your Pet Language, Proc . of the ACM Symposium on Principles
of Programming Languages, Austin, Texas, 10 (January 1983) pp.
101-154.

[MP3] Manna, Z. and Pnueli, A., Verification of Concurrent Programs:
A Temporal Proof System, in "Foundations of Computer Science
IV", J .W. DeBakkcr and J . Van Leeuwen, editors,Mathematical
Centre Tracts #159, Amsterdam (1983) pp. 163-255 ~

[OG] Owicki, S. and Gries, D., An Axiomatic Proof Technique for Paral
lel Programs, Acta Informatica 0 (1976) pp . 319-340.

[Pn] Pnueli , A., The Temporal Semantics of Concurrent Programs,
Theoretical Computer Science, 13 (1981) pp. 45-60.

[W] Wolper, P., Temporal Logic can be More Expressive, tu~nd Annual
Symp. on Foundations of Computer Science (1981) pp. 340-347.

!'OR MAL MOllfLS IN !'ROC. RAMMI NG
F.J . !': ~ u hold and G. Ctuoust (Ed itors)
Lb;~· \· i c r Scil· ncc Pu hli.o;. hcrs B.V . (1\: o rth -Ho lland)

Irll', 1 9~ .<

A COMPOSITIONII.L TEMPORAL APPROACH TO A CSP-LIKt: TANGUl>.GF.

Howard Barringer and Ruurd Kuiper

Department of computer Science
University of Manchester

ManchesteY, England

ll.mir Pnueli

Department of Applied Mathemat"i.cR
The Weizmann Institute of Science

Rehovot, Israel

A temporal semantics enabling the independent description of
components and dealing with the liveness aspects of synchronised
message based communication is developed for a CSP-liXe language
with dynamic process creation. A closely related composit i onal
temporal proof system for total correctness explo"i.ting the
compositional features of the semantics follows. The use of the
proof system to provide program correctness proofs is exempl"i.fied
on a program to compute factorials, its applicat"i.on in h"i.er
archical program specification is illustrated by the development
of an implementation of a queue as a dynamic network of processes.

1. INTRODUCTION

83

In communication based languages, as opposed to shared variable ones, interact"i.on
bet:ween parallel components is clearly distinguished from activity within each
component. Various partial correctness proof systems for such languages have been
developed which reflect the inherent compositional characteristics, "i..e. enabling
the synthesis of a proof concerning a program via independent proofs about its
subcomponents. Examples of such approaches are Misra & Chandy (1981), Zh~u & Hoare
(1991) and ZWiers et al. (1983). There have also been efforts to extend
compositiona.l proof systems to more than just invariance properties, e . g. Liimport

(1993), Hoare (1981) and Misra et al. (1982). A total correctness proof system ,
using temporal logic as a natural tool to handle the compl 'l.cated l iveness
behaviour induced by synchronised communication primitives has been given by Manna
& Pnueli {1983)1 this approach, however, does not enable composit"i.on of pYoofs.

The aim of this paper is to present a total correctness proof system for a
CSP-liXe language with dynamic process creation (cf. ZWiers et al. (1983)) based
on tempora.l logic Whilst retaining compositionality. The paper, here, builds upon
techniques presented in Barringer et al . {1984) Where a compos.1tional temporal
system was developed for a shared va'riable para.llel language . The central "i.dea
presented therein was to obtain compositionality bY describing a component via tts
behaviour in any environment using an interleaved mcXIel of paralle 1 execution .
Such descriptions required distinguishing tYansitions made by a component h·om
those made by its environment and hence labelled transittons were introduced into
the model and transition propositions into the temporal language. There are two
main problems which result from handling synch'ronised message based commun\catton
primitives. Firstly, two components may share an action (e.g . an internal
OOimlunication) and hence a more complex transit ion labelling convention io
required. secondly, the rather intricate synchronisation behaviour (e . g . blocking
under just and/or fair execution) demands more information than that provided by

II. lJarring cr ct a/. 84

the above sequence model. These aspects are handled here by the introduction of
special transition labels (in particular, waiting sets) to the model and of
appropriate ~ransition variables to the temporal language.

In the following sections, a natural, temporal logic based, denotational semantics
is developed for the CSP-like language and, based on that, a closely related
compositional temporal proof system is given and exemplified. Although the more
detailed restrictions that are applicable when the system is used as a
-hie-r-a~hical --spectfi:catton - metnod- are not given, its potential for thal

application is demonstrated by the stepwise development of a queue as a dynamic
network of components.

The paper is organised as follows. Section 2 describes the CSP-like language.
section 3 introduces the temporal language used in section 4 tor describing the
formal semantics and used in section 5 for the proof system. section 6 contains
two examples, i) verification of a factorial program, and ii) the development of a
queue. Finally, conclusions are given in section 7.

2, CSP-LIICE LANGUAGE

Coununicating sequential Processes (CSP), introduced by Hoare (1978), is a
language to describe computations distributed over several parallel components
which interact by means of synchronised message based corrmunication. A similar
language is chosen here, both because CSP (or one of its nUIDI!rous dialects) is
frequently used to illustrate other proof methods, e.g. Apt et al. (1980), Levin &
Gries (1981), Lamport & Schneider ()984), Misra & Chandy (J98l), Zhou & noare
(1981) and Zw1ers ~ (1983). hence facilJ.taUng comparison, and also because
many other communication mechanisms can be based upon the CSP primitives, e.q. Ada
rende~vous, Gerth & de Roever (1984) and Pnueli & de Roever (1982).

To indicate
progranwning
presente<l,
creation by

that the method developed here can be applied to reasonably realistic
languages and examples, a fairly general CSP-like languaqe is

including variable and channel declaration, ana dynamic process
means of nested parallelism in recursive procedures.

To provide some intuition before entering the more formal sect"\.oi'\S, the syntax of
the language is accompanied by some informal description of the language element's
meaning.

Statements

S II UI..,..B

akt.p
cte
c?U

(0 bt -> St,)
UK

0 (0 bt!Ctl&t -> St,)
UL

assignment

output command, send value e along channel c
input command, receive the value sent

on channel c and assign to the
variable u

guarde<l choice, by purely boolean guards

by booleai'\S and output guards

D. (~Hbt,/Ct,7Ut, _, St,) J by booleai'\S and input guards

s.,sz
S 1 11Sz
&~~t.w b do s od

beQ'Ln
chan c1 uar 1.11

s -
sequential composition
parallel composition
while loop
channel and variable declaratlon

Programs

p II

A Cn iiiJJUsit io nu! Tcmt'oral .-lpprooclt to fl CSP-Lik e Lvnguage

proc~ure call with actual channels Ca
and actual variables ua

proc Pt(Chan Ctfl uar Utf) Q 5t }J 5
program P is a statement 5 headed by a

set of possillly mutually recu'rS"i.ve
p~ures Pt with formal arguments
Ctj and Utj

85

The special feature of CSP, synchronis~ cOim\unication, is here represented via
hi-directional channels over which values may he sent as a synchronised action of
~wo parallel processes. Consider the program fragment chan CJ 5, where 5 contains
the parallel statement 5 1 1152 with c/e occurring in 5 1 and c?u occurring jn 5 7 •

Assuming the send and receive semantically match, thr value of e is sent over the
channel c to be assigned to the variable u as a simultaneous action by 5 1 and S 7 •

This communication is synchronis~ in that when, for example, c/e Js encounLered
in a statement, it can not he execut~, i . e. pass~, until the moment l.:hal.:, J n
some other parallel statement, the complementary primitive Js encountered. nence
the application as guards in the guard~ commando any St for which the
corresponding boolean or boolean/COII'CIIunication guard can he passed may he chosen
for execution. As will he seen from the formal semantics Jn section 4, fl.lir
interleaving is us~ for non-communication steps and both a form of Ju8ttce and of
jatrnsss concerning channel communications are treat~.

An example of the use of nest~ parallelism in recursive procedures Js gJven Jn
the following factorial function.

proc fact(chan tn) ts
b&g1.n

var :t.J

f.n?;r,

[:r=0 - > tn 11

0 X>O ->

entL

b&g1.n
chan tJ var 111
((tl;r - 11 t?JJ) II can tact(t} }J

t.nl:r"l/
end

To achieve both the objectives of capturing l ivenese properties and ofoblaininq
compoei.tionality, program behaviour will he described by means of labelled stale
sequences. ~ temporal language is the natural choice for expressing the required
sequence properties. The version us~ here includes a chop or combtne operator (c
) and its lterat~ version (c•) and includes the expression of maximal f~lnt
solutions to temporal implications enabling straightforward treatment of,
respectively, sequential composition, iteration and recursion.

In the following the temporal language and its interpretation 1s presented.

3.1. Basic ~lphahet

The basic symbols of the language are divided as thn>e groups.

II. Harrin}!cr t ' l a/. 86

i) local symbols, i.e. symbols whose values are state or trans \ tion
dependent

P£P state propositions
y£Y state variables
L£L transition variables

ii) global symbols, i.e. symbols whose values are fixed .for _the compl.ete
_segu~npe __

X£X global variables

iii) constant symbols , i.e. symbols whose values are the same for all
sequences

f£P function symbols
qEQ predicate symbols

Terms are constructed in the usual way from state, transition and global
variables, or by the application of appropriate function symbols to terms. ~tomic

formulae can then be built from state propositions or by the appl \cation of
predicates to terms .

The logical constants are the standard truth constants,

true, fa..lae

the standard first order logical operators,

~ , A 1 V 1 ~ 1 ~. ~~ 3

the unary temporal operators

0 (next t~) , 0 (eventually) , 0 (always)

the binary temporal operators

U (strong until), U (weak until) , c (combine) , c* (1 terated combine)

and the rnax1ma..l fixpoint operator v ,

Temporal formulae are then constructed from atomic formulae by the appropriate
application of logical operators.

3 . 2 Interpretation over Labelled sequences

l'.ssuming a fixed domain, o, and fixed interpretations for the function and

predicate symbols, a IDOdel M over which a temporal formula is interpreted is a
+-tuple,

where

M- (a, o, I, J) ,

a assigns D-values to the global variables,
o is a non-empty finite or infinite sequence of states

and transitions

0 o s 0 ~0s, ~'Sz ~z .. , , ,,

is a state interpretation assigning D-values to each state
variable and truth values {T, P) to state propositions,

J is a transition interpretation assigning D-values to each
transition variable .

Given a IDOdel M-(a,o, I,J) it i..B possible to define, inductively, the

87

interpretation of temporal formulae over M. In general, this interpretat~on only
involves ch"ange to the sequence a an(j in the following 4> I 0 (t 1 a) abbrev~ates the
value of the formula 4> (term t) over the ~elM.

The sequence operators < (proper suffix), ~(suffix) and 0 (fusion) are required,
and are defined as below, where the length of a sequence o je defined as lhe
number of transitions occurring in a.

o 1 °0z is if 01 =So~ 8~ ~ .. , Bk, and Oz ~ Bk ~ 8~+\ ~
then S 0 -+ S 1 -+ . . . B)< -+ 8J<+ 1 -+ . . .
otherwise o 1 •

holds if there exists a o 2 of length > o such that ~-a 7°o,
holds if a~<a or a~~ -

Xla I> O.(X)

Yla " l(SooY)

t I a " J(t 0 , ~)

global variables

state variables

transition variables

£(t 1 , • ., tn) I a e F' f(t, I o, · ., tn I a) funct~on applications where F'£ is
the fixed funct~on value for f

Ot 10 " t Ia(•)
Where a< •)~s,-+s~-+ ...

the next time operator appl~ed to a
term is the tenn evaluated in the
suffix starting from the next state.

J>.tomic Formulae

atate propositions

q(l 1 , •• ,tnlla" Qq(t 1 10 , •• ,tnlal predicate applications where Qq ia
the fixed predicate value for q

Now assuming the standard interpretation for the standard logical symbols (i.e.
for true,faloe,-,A,v,~,~,3,V), formulae~ constructed using the temporal operators
are interpreted over o~s0-+s 1 -+ ... as follows.

~Ia if and only if ¢Ia(>) Where a< •l~a 1 -+s 2 -+ . . .

Note that if o is of length o then 04>1 0 is F' and hence the formula ~ ja true
only at the end of the sequence o.

D¢1o T iff

~ I a T iff

~Ia ~ T iff

T iff

T iff

4>C•II>Io ~ T iff

for all a'.:O 4>la• = T.

there iS some a•.:a such that 4>la• ~ T.

there is some a".:O such that
a) Iiila•• ~ T.

and b) for all a"<a ' l(a ¢Ia• ~ T.

((4>~) v Ocl>lla ~ T .

there are a • ano a'' Where a • 0 a'' '- a such t.:hal
if a• ia infinite then cl>la• - T
otherwiae both 4>1 0 • ~ T and \lila• ~ T

e1ther there are a~,a.,, . . ,~,ak+J' ~J 0a7 •. ax 0 ok+J
ouch that ¢1ai~T for iE(l . . k) anj liii<Jk+,~T

or there are a.1,a 2 ,... a-o.1°a2 °
such that Ior all 1 ¢1 0i~T

v(.X(Oia • 'J' iff

H. Barrin~er er a/.

or there are a~,az , . . . ,ax, a=a~ 0az 0 ·• ·UX
.uch that Ok is infinite and ¢i 01~T, i£(l .. kJ

for all)tJoO, xk< tzue) lo- ~ T
where xl'i true) is the tempora 1 formula

X(X(••.•)((hue) .•.•))
)C--t: 1me.s

88

AsSt!!!!!3 the -~ foz:alla X(() . Contains only positive occurrences of the
temporal var1.11bla (, t.a. (occura only under an even number of negations . The
temporal fo~la v(.)(((), 1n fact, then denotes the maxiJnal fixpoint solul'i.on,
with respect to illpltoatt.on ordarj.nq, of the implication t-+x((). The extension of
v to vector& 1JI ~ \wed and ~ explanation is g'i.ven in secti.on 4.2 where
proce<!ure -.rt:1ca ar. ~loped.

4 . 1 • The Q:eputat 1on MoOe 1

The meaning of a proqram s 1.a taken to be the set of finite or infinite
canputation sequences S can qenera.te in any environment. The more detailed
features of a oamputatton sequence a.re derived from the following consi derations.
The states s of the sequences a,

a - 8o -+ •~. ~ •z. -+ • • • • • ,

are global 1n that a atate assigns values to all state variables . Although CSP is
restricted to measage l>a-Bed COIIID\lnication only, here, the more general global
sta.tes are ~ to be able to also express Ma-like sharing of variables, if so
desired! However, non-sharing can always be obta1ned either by not using the same
variables in different parallel components or by declaring new variables locally
for each para1lel component. The set of variables is infin1.te (to enable
recuraion) but for any tenninating program only finitely many will be used.

The transitions between these states are labelled to achieve compositi.onali.ty . The
idea. 1.a that every component has its own view as to what caused a change to the
program variables. Transitions can be labelled byr-

n indicating an internal step of a component,
r:. indicating an environment step,
cia. indicating an external send of value a on channel c
c?a. indicating an external receive of value a on channel c

Thus a. sequence labelled from the view of P, as

S 0 ~ s, ~ Szc~as, ~ s 4cl11
•••

and from the view of Pz as

S 0 ~ s, ~ s._c~as, ~ s
4
~ •••

would be labelled from the view of P,IIP2 as

This example indica.tes that a corrwnunication between P 1 and P, is an internal step
of P 1 11P._ considered as a single component, an external COim\unication of P, but
not to P._ 1JI clearly an external corrwnunica.tion of P,IIPz considered as a single
~nent.

..t Co111pnsi1inna l Tc111poral A ppm ach 111 a CSI'-Likc LUIIJ!IIil!i<' 89

Finally , lo ~escr.tbe bloCking behaviour it is necessary to ind i cate what
OO<mlunications are on offer by a coonponent but not (yet) satisfi~ try its
environment . AB this loo is ~epeooent upon what component • s view of the system is
taxen, 1l is ~~~ as an extra label to the transit1on in the fonn of a waiting
Bet .

So, overall, the computation sequences of a program S are of the form

>..z.,Wz.
Sz ~ • •• • • ~

and are call~ p, , w)-sequences. such a sequence a can be extend~ to a model
~(a,a,I,J), as given in section 3, by taxing,

a as an arbitrary global assignment to the global (logi cal) variables,
a as the given sequence,
1 as ~efin~ by t(si,y)-y(si)• the value of the state variable y

in state Sl

J as ~ef1n~ by J(ti.~)-~(ti) an~ J(ti,w)-w(ti) for the two
~istinct types of transition varLable .

l'. 1110<1e 1 M for a program s is then call~ a (~, w)-1110<1e 1.

4 . 2. semantic Equations

For each form of statement s in the language, its temporal semantics, (S]a, is
~efin~ as a temporal formula 4>(~,w) with two free transition variables ~ i1n<'l w.
The meaning of 4> is that a (~ . w)-sequence satisfies 4> if an~ only Jf it Js an
execution sequence of s. Since the language allows proc~ures, the meaning of a
statement is ~epeooent on some environment e ~ c9 1 , • • , 9n> containing the meanJ ng
of the visible proc~ures. Initially , a semantics provi~ing just treatment of
Channel COII'Il\Unication is given, 1110<1ifications for fair treatment are consJ~e~
later.

To make the ~escriptions a l1ttle more presentable, the following abbreviations
are ass Ulne(1,

~-E as ~· ~-n as !!· ~-cia as ~~ etc.,
..- as ~ . w-j2! as ~· where Ill is the empty set, etc . ,
-otn>e as fin

~ A w-lf as i~le(W)

!! A '·lo>"'f15 A)) A D:i."'Y. as teet(b)
!! A- A Clr'-~ as loM(W)
0(i~le(W) A -fin) as fail(W)
loM(W) A Qfail(W) as bloci<OO(W)

Assignment

[ur-.o)o " 1~le(fll)!:!. (!!A ~A Oy--y[eju] A Qf1n)

The meaning of an assignment ur-. which of course desires no communicat i ons, in
any just parallel environment is thus given as some finite nwnber of arbi trary
environment transit i ons foll~ by an internal step which updates only the state
variable u after wh i ch it terminates.

[eUp]a " 1~le(fll) !:!. (!! " ~ A Oy-y " Qfin)

The meaning of ektp, here, is just taxen as enforcing an internal tranoitton with
no effect on the state variables.

90

Output Command

To enable expression of justice for the parallel construct with regard to channel
communications, communication possil>ilities must be identified for output (and
input) CO!mla.nds. Thus the fact that a component is blocl<.ecl on a channel c is
descr~ by the continual presence of that channel in the waiting set associated
with that component.

- "{cte]a idle(j2l) I!. ((3a·. a~e " ~ " ~ 1\ - Qx->y" Ofin)
v blocl<.ed({cl)))

Per later use we abbreviate 3a.a~e " ~ " ~ " Oy->y as

Input Command

eend(c,e)

(c?u]a ~ idle(j2l) I!. (receive(c,u) " Qfin b locl<.ed((c? I))

Here, receive(c,u) abbreviates the temporal formula 3a . c?a" ~" Oy~(aju] .

The semantics _is clearly analogous to the output command.

Guarded Choice

Although full abstractness is not an aim of this semantics, it is desirable to
avoid distinguishing certain blocl<.ed behaviours which can not in reality be
distinguished. Consider the following example from de Nicola & Hennessy (1983).

Abbreviating communications by a , b , and c r-

f a c 1 p I I

Q :: f a -•
b 0 a - •
b 0 a c 0 a -• [b -• aktp 0 c -• aktp 11

i.e. P Q

a

b c b c 1\
Assuming communication a has occurred, P allows sequences blocked with the waiting
sets {b) or (c), whereas Q allows the waiting sets {b), (c) or (b,c). However , no
program context can distinguish P from Q . Por the programs to have the same
semantics, extra sequences are incorporated which are blocl<.ed on superset& of the
original waiting sets. Thus the following semantics is obtained for the guarded
choice .

idle(j!l) I!.

where

((3i.<:l(.test(bt) "C(S;.)a)
(3i.£L . b;." send(Ct , Bt) "O(S;.)a)
(3i.Of. b;. " receive(c1 ,ut) " O(S;.)a)
(Vi.£K . ~t)" 3S.blocl<.ed(C uS)

c is the set Uct I
bt,f..EL

91

The eemant.ice asserts some arbitrary initial amount of environment act'i.on followed
by either a successful evaluation of a guard (the first three disjuncts) and

thence execution of the corresponding statement, or a blocked situation .

sequential Composition

The reason that the combine operator (C) was chosen to be weak is that should a
computation of S 1 diverge, Sz will not, of course, be executed.

Parallel COmposition

The essence of parallel composition is that sequences of S 1 11S, are sequences, by
appropriate relabelling of transitions, of both s, and s, . Furthermore, to
illustrate how livenese conditione can be incorporated 1n the parallel semanl1cs,
component justice is treated here {and later extended to fairness). The 1ntuit1ve
meaning of component justice ia the followingc

no two components can be simultaneously blocked if there is a
channel along which they could communicate with each other.

The waiting set, as already introduced, 1s used as the mini.mal additJonal
transition information neceaaary to describe this livenees condit1on 1n the
semantics, it ia only added to sequences in the case that there 1s a blocked
component .

These notions are captured by the following temporal operator par.

<~.parch) Q

~ ,wl.,>..z,Wz.·

~1(>-.1,..,1)" tl>z(>-z•"'z.)" (l)
0((>-.=n ~ (>- 1 =n" >-z=E >-,~E ">-2~n (2)

3c,a . (>..L=cla ~ >.. 2 ~c?a v ~~~c?a A ~7.~cla)) ~
{>-.=E 4 >- 1 =>-z-E) (3)
{~{n,E} 4 (>-.•).. 1 " >-z=E >-. 1~E " >-~>-z)) " {4)
(c.>=c.> 1 UWz)) 1\ (5)

just))

where 1 just e -3c.OQ({cl,c?)~w)

The intuition behind this semantic parallel operator par is as follows. Provided
the arguments 4> 1 and ~ .. describe infinite sequences, lt ie cla~ that (~, par
tl>z) describes exactly the set of sequences obtained . by the parallel composition of
~ 1 and~ ... Line 1 states that a sequence of (~ 1 par 4>-.) can be relabelled as both
a sequence of ~ 1 and of 4> 2 in such a way, lines 2 to 5, that is consistent with an
interleaving semantics with synchronised comnunication steps. Line ~ gives the
relabelling for internal actions, line 3 gives the relabelling for environment
actions, line 4 gives the relabelling for external comnuntcations and line 5 is
the relabelling of blocked sequences . The last line ensures the sequences are
just.

As in thi..B semantics finite computations are described by finite sequences, the
above operator is used as follows to describe the semantics of parallel
coonposition.

[S1 IIS2]e Q { [S1)e C (O{idle(jll)" -fin)) par
[Szle C (O(idle(jll)" -fin)))

~" {0fin 4 <X!!" Ofin))

H. Barringer ct a!. 92

All component sequences are extended to infinity with idle steps (linea land 2),
and then after application of the parallel operator par unnecessary idle steps are
removed (line 3) ..

While Loop

[LII'ltt.e b do s od)e " (idle(9l) !:!_ (teat(b) " ~S)e)) c"
(idle(9l) !:!_(teat(~) " Qfin))

By virtue of the iterated combine operator, the meaning of the while statement can
be expressed directly without the use of fixpointa. The three cases of c•
correspond to finite iteration and termination of the loop, to finite jteratjon
but divergence of the body S on the last iteration, and f1nally to jnfjnjte
looping.

Channel and Variable Declaration

(J>eQt.n chan c; »ar u; S end)e "
(3wpc,u.([S]a(>.,w~)"

[JPrVar(~. u) "
[J-..3a.(cla v c?a) "
O(w ~ w~\{cl,c?}))"

[JPrVar(~. u))

where PrVar(X,u) "X -'1 Ou~

The meaning of a local channel declaration is that a new channel is introduced
(globally) in such a way that internal cOI!IDUnications by s may occur but no
external COIIIl'lunicat ions from s to the environment may occur. This requires that
such sequences where s COI!IDUnicatea (or attempts to) over the channel c to ita
environment are el:I.Jninated (lines 3 and 4). Similarly, a local variable
declaration restricts access to the variable to the statement s. This is achieved
by eliminating those sequences where the environment changes the variable (line
2). l"urthermore a non-local variable of the same name can not be changed by the
components (line 5).

Procedure call

[catt Pt(c0 ,u0)1e " idle(9l) !:!_
<n" w-Ill" ~-y" 09t<ca,ua>l

The environment vector 8 provides the meanings of all the procedures j n t:he
program. Thus the meaning of a call of some procedure Pt with actual arguments c 0
and u0 is given by the ith component of the vector having replaced ita free state
variables (i.e. the procedure • s formal arguments) by the actual arguments. The
parameter mechanism is thus call by reference. At least one component (idle) step
is forced thus ensuring that the semantics of a call of procedure p defined as
proc p t.s catt p end yields a divergent result.

Program (Procedure Declarations)

To facilitate the understarwUng of procedure declarations we first present the
semantics of a program with just one procedure declaration.

" [S)e

A Compositwnal Tnnpural ,'1ppmach ro a C'iP-Likc Lun?li•tgc 93

'n\e meaning of s is C!ependent upon the meaning the procedure p, contained in the
procedural environment e, Pollowing the usual practice 1n denotat1onal semantics,
the meaning of the recursive procedure p 1 is given as a fixpoint of the inequa1ity
(5 (S1]<(>l here the ordering 5 is an implication ordering on tempcra1 formulae,
i.e,

~ 5 w if and only if ¢ ~ w,
and maximal fixpointa are used, note the minimal fixpoint in this ordering is
trivially false, The implication ordering is used to remain in step with set
containment.

By the continuity of the temporal implications of the form C~X(t) when only
positive occurrences of c exist in x. it follows that vc.x<t> (i.e. ~xi(true)) js

the maximal £ixpoint o£ the implication.

'n\e given semantics can easily be extended to handle programs headed by a
collection of mutua1ly recursive procedures, cf. de Rakker (J9BO) and Manna
(1974). It requires taking fixpoints over a collection of n temporal jmpJications

<Ei~i(E)ii=l .. n>, where E is a vector

i.e. to obtain the ~imal fixpoint solution of the inequality

E ~ <X1' · · ·#Xn>(B)

using the obvious vector extension of the implication ordering.

Furthermore v iS extended to vectors in the following way. vE.<x, .. --·Xn•i.Cl'O is
defined aa the vector of temporal formulae

<A((si)j) 1 j 3 l, • n•
i

Q <true. n!-i::~s true>

o •x.<si-•> , Xn<si-•>•
jth element of the vector.

lJnller sim.:llar restrictions of only positive occurrences of the Cj in the formulae
Xi• the vector of infinite conjunctions is the 11\al<.l.mal fixpoint of the above
inequality. Thus the following is obtained.

[S)3

4. 3 Pairn-ess

Stronger and 110:>re intricate liveness requirements than component justice can be
deacri.bed in a similAr way to above by adding more t"Cansition information as
necessary. ThiS iS demonstrated through the notion of channel conmunical.ion
fairness•

cc.munication alOng a channel iS not indefinitely postponed if on one end a
OOIII,pOnent iS continuo·mly trying to conmunicate and on the other end the other
OOIII,pOnent infinitely often tries the matching communication.

Par example, input continuously offered to a buffer, dividing ita attention fairly
l:let:ween input and output channels, will eventually be accepted.

To ll.aMle thiS fairness notion in the semantics, OOimlllnication atte.pts by

non-blocked COIIIpOnenta must be visihle 1 thiS is achieved, below, by load in<;! the

II. /Jurnnrcr ct ul.

waiting set with these attempted communications.

The semantics for output command thus becomes:

[cle]e Iii idle(fll) !!_ (load({cl}) "
0((idle({cl}) g (send(c,e) " OHn))

fail((c I }))

and similarly for input. For guarded choice the following is obtained

idle(pl) y_
3S.(lo~(C US) "

Q(idle(C uS) J:1

where c

((3t.e:.K. test(bt.) " O[S,; le)
(3t.e:L. l>t. " send(Ct., et.) " O[.S,; le)
(31-e:H.I>-t." receive(c-t.,.Ut) "!X.S,;]e)
((Vi.E.K.~,;)" fail(C uS)))))

is the set Uct.l
"t.• t.£L

94

and finally by changing "just" in the par operator to "fair" given below, a fpar
operator can be obtained.

fair Q vc.((0Dci£Wi " 00c?£~il 4 D03a.(~i~cla " ~i~c?a))
for i•1,2 (with ~i as the complement of i).

5 • A TEMPORAL PROOF SYSTEM

In this section a compositional temporal proof system for the CSP-lLKe language is
given. The soundness and relative completeness with respect to the temporal
semantics given in the previous section is easily argued.

Notation

In the foll~ing the notation ~{S)e ¢ is used to denote that the temporal formula
~ :I.e a specification of the program (statement) s under the assumption of a
procedural environment e, i.e., in terms of the semantics, all the (~,w)-sequences
of the statement s are (>-.,w)-models of the specification ¢. This connection
between semantics and the proof system is given by the following rule.

t ISle 4>

~ [S]e .. ¢

Rule of Consequence

t ISle ¢
t ¢ .. \II

ISle "'

The soundness of this rule is as follOW'S. The second premise ensures that all
IOOdels of 4> are also models of ljl and hence as by the first premise all execution
sequences of s are models of ¢ they must also be modele of ljl.

95

1\xiom of 1\Bsignment

~ (u,~e)e (idle(~) Q (~ ~ ~ ~ Oy=y[eju] ~ Ofin))

The soundness follows ~rivially from the assignment semantics.

In fact. as the rules given below, apart from the procedure rule, follow the
semantics directly, their soundness is obvious.

Input and Output 1\xioms

{c/e)0 (idle(~) Q (send(c,e) ~ Of'n
{c?u}9 (idle(~) Q (recetve(c,u) ~ Oftn

blocked((c/))))
v blocked({ c?})))

Guarded Choice (GC)

(Si}e ~i , iEKuLuM

(GC}e [idle(~) Q
((3tEK. test(l>t) ~ ~t)

(3tEL.I>t ~ send(ct,et> ~ ~t>
(3tEH.I>t ~ receive(ct,Ut) ~ ~t>

(~tEK.-I>t) ~ 3S.blocked(Uct/ u Uct? uS))]
l>t• tEL l>t,iEH

Where GC abbreviates the syntactic form of the guarded command given jn sectjon 2.

Concatenation

While Rule

Parallel

{Sile ~i • i-1,2

{Slo ~

{Uh£~e 1> do s od}e [(idle(~) Q (test(!>)~~)) c•
(idle(~) Q (test(-.!))~ fin)))

{S~IISz}e [((~~ C O(idle(~)" ~fin)) par
(~z C 0(idle(~) " ~fin))) "
~ " (Ofin "' 0(~ " Ofin))

Channel and Variable Declarations

{S}e 3c,u.(oPrVar(!,u) " oPrchan(c) " ~) c, u ~ free(~)

{beg'n chan C/ var UJ s end}e (~" oPrVar(~.u))

Where Prchan(c) "0((~3a.cla v c?a) " {cl,c?)~)

If ~. under the aBsumption that the environment preserves u and no external

H Barnngcr ct a/. 9G

communications are made on the newly declared channel c, then ¢ (and the fact that
an external variable u is preserved by the component) holds for the declaration.

Procedure call

(ca~• Pt(c,u) Je idle(~) Q
(J:l" ~" Oy--y" oe1 (c,u))

The procedural environment e provides a specification of all the procedures
declared in the program. Thus the meaning of an actual call is simply obtained by
accessing the appropriate specification.

Program Declaration

~ Ei -1 [Stl;; h€1. .n implies [~ Ej -4 Bj lj€1. .n
{ s le ¢

(proc Pt(•.•) ts St end1 s J ¢

The semantics of procedures being defined by maximal fixpointe, this rule states
that if every fixpoint is sufficient to prove the environment e and if with this
environment $ can be proven of the statement s, then ¢ must hold s executed in the
associated procedural context.

5.1. Completeness of the System

Completeness of the above system follows by induction on the structur-e of the
statements ae for each statement the temporal language can express the semantics
in a closed form. The inclusion of the fixpoint operator r-enders the tetnpOral
language expressive enough to provide the closed form for procedure calla.

E> .1. Proof of a Recursive Factorial

As a first example in the use of the above proof system, a proof of the factorial
function given earlier in section 2 is presented. The proof follows traditional
approaches to verifying existing programs against specifications.

I
It is desired to prove the following

where

{ proc tact ••• end, ca~~ tact(tn) } $(in)

II>{ in)" t icHe(O)!:!. (3a.in7a v blocked({in7}))
(Jifa.(in7a " a>o ""

<! v J:l) Q (inial "Ofin v bloeked((inl))))

Informally this specification states that once fact has been called, it will
attempt to input any value a on channel tn. tf it succeeds, then there will be no
external .,._,.unication (on that channel) until eventually it either manages to
output al on channel tn or becomes blocked. The success of that communication is
of course depe~ent on the environment being willing to participate!

The following predicates are defined•-

input(in,u) " idle(j!l)!:!.
((3a.(~" ()y--yt[a,lu] "Ofin) v bloeked({in7}))

A ComJwsirional Temporal A!'f"'Oa< II w a CS!'-Ukc Li111J:llagc 97

output(ln,,a) " ldle(gl) Q ((..!:!21..!" Ofin) v blocked((in!}))

which cor~spon<:l to the semantics of receiving and sending. The specification 4>
then becames •-

<!>(in) Q [idle(O) Q (3a.in?a v blocked({in?}))
l}v'a. (in?a A a>o -!

(~ v Q) Q (output(in,a!)) J

The proof proceeds as follOI;fB.

1. ~ C -4 [Ble; ASsumption from Program Declaration rule
B is the body of tact, and 8 ~ <t>.

TO prove the premise of the Program Declaration rule, it is now shown that ((~n)
~lies <!>(in) by induction on the value of a. Define

w(in,k) Q t(in) ..
[idle(O) Q (3a.~ v blocked((in?}))

l}v'a. (1n?a " a~k>o -t
(~ v Q) g output(a!)))

The basis for this induction is given by considering the semantics of the body of
the factorial function for the case k-Q in 1. This gives step 2 below.

2. ~((in) <l [idle(O) Q (3a.~ v blocked((in?})) "
l}v'a.(~ " a-k--o ..

(! v !!) g output(l)))

Now, by assuming t \ll(in,k) (in<:luction hypothesis), that t w(in,k+l) holds. This
follows by considering the expansion of the body of the factorial function.

3, t (in?x ls idle(~) Q (3a.~ v blocked({in?}))
by Input and consequence rules

4. t (tlx-11 t?y }g x-k+l>O " oPrvar(E,x,y) .. [output(t,k) c input(t,y) J
OUtput, Input and Sequential composition

5, t (call fact(t) lE ((t)
Procedure Call rule

6, t { ca11 fact(t) Js idle(~) Q (3a.t?a v blocked((t?)))"
l}v'a.(~a" a-k>O .. [(~ v Q) Q output(t,al)))

from 5. and the in<:luct1on hypothesis t 1'(t,k)

7. r ((tJX-11 t?y)llcal.l. fact(t) h~

k>O " xAk+l " oPrvar(x,y) .. [(~ v Ql u (y-kl " fin})
from 4. and 6. with the (just) Parallel rule.

8. r (((tiX-11 t?y)llcall fact(t))1 in!X"y IE
k~ " x-k+l " oPrYar(x,y) -t [(E v n) U output(in,(k+l)I))

from 7., OUtput Rule and Sequential cOmposition

9. r { B Is [idle(O) Q (3a.in?a v blocl<ed({in?})) "
l}v'a.(in?a " a-1<+1>0 .. (~ v Ql Q output(in,al)) J

from 3., e., Input, Guarded Choice and Sequential Composition and

temporal reasoning

10. 1- [B}:;;: "' [idle(0) Q (3a. in?a v blocked({ in? J))
~a.(in?a ~ a~l<+l~O 4 (~ v g) Q output(in,al)))

·by semantics rule

11. 1- \jl(in,l<}
by 1., 10. and Induction.

12. 1- { proc fact(in) end1 cal.l fact(in) l <I>(in)
by Program Declaration rule

6.2 Development of a Recursive Queue Network

98

ln this section a general queue specification is developed towards a recurai.ve
queue network.

It ie desirable to specify systems in a black box fashion. For a queue, this means
specifying it solely in terms of its input and output interface 1 here, it is
chosen that this interface is in terms of channels.

out
QUEUE

--<----
->~1

~------------------~

Naturally, the specification should not refer to any "innards" of the box. AB hae
been previously shown (Sistla et al. (1982)) pure linear time temporal logic (past
or future time) is not expressive enough to be able to capture the behaviour of an
unbounded FIFO queue which has non unique messages. There are at least two ways to
overcome this problem in expressiveness. It is possible to int:roduce auxiliary
variables into the interface state, such auxiliaries could be used to IILi..!nic the
behaviour of a particular queue. A1ternat1vely, the Jogic can be strengthened
sufficiently to be able to capture the desired propert1es.

The approach adopted here may seem a miXture of both the above t:echniques .
Firstly, the tempora.l language used here includes recursively defined tempora.l
predicates, in a similar manner to Wolper (1981) • Secondly, such predicates are
a.llowed to have 1) "call be reference" arguments to refer to actual jnterface
state variables, and ii) "call by valuefname" arguments to act as auxiliaries for
the recursion. Providing such a system is then defined using such predicates over
only the externally visible, i.e. interface, parts of the system, spec1fications
are claimed to be fully abstract, i.e. possess no implementation b1ae.

The first specification of a FIFO queue having input channel tn and output channel
out is defined recursively, as below.

queue(in, out, c) Q

waitfor({in?,outl}) C
3a.[in?a ~ Qqueue(Jn, out, CA<a>}}

"
out!(hd(c),f),.. c;to "Qqueue(in, out, tl(c))

"
outl(@,t) " c-<• " Qclosedown]

'Where•-
waitfor(~) Q D<! v n> " OQ(wJK)
closedown Q idle(Ill) y_ fin

99

Thus specification of an initially empty queue with channels ~n and out is given
by the maximal fixpoint solution to the alx>ve equation appl1.ed with argwnents as
follows

[vq.Xq(q))(tn,out,<>)

where Xq is the righthand side of the equation. For use in later formulae, the
fixpoint solution is abbreviated to Fq.

A queue behaviour is such that either the queue never performs an external
communication or immediately after it performs some transput the system behaves
like an "updated" queue. Although it appears at first sight that contents is
mi.micing the real contents, this value is only used to partition behaviour
sequences into subsequences from which the appropriate queue behaviour holds.

The fairness behaviour of this queue is such that if no communication occurs ~t is
not the fault of the queue (because it was eventually trying continuously to
communicate) but it is because the user of the queue did not try hard enough (i.e.
infinitely often).

Rather than implement a queue in the manner directly suggested by the alx>ve queue
specification, i.e. a recursive queue procedure with an internal variable holdinq
the contents, the specification is develope'\ towards an implementation as a
dynamic chain of 1-place cells, following the intuition below.

in
--)--

out
--<--

-·-~ cell ~--->---~ cell ~->,, ... >---~empty I
-<-- __ ,__ -< .•... <-- cell

As values go into the queue so the chain g~s,
arw:l as values come out so the chain shrinlu!.

This system is specified by the solution to two mutually recursive temporal
equations. Informally, the first equation describes an empty cell and the second
equation describes a one place cell.

empt:y(in,out)"
waitfor((in?,outl}) C
['la.(in?a"

O['linl,outl.(cell(in,out,inl,outl,a) fpar empty(inl,outl))] C

empty(in,out))
outl(@,t) "Qclosedown

ce1l(in,ou~,inl,outl,v) ~

waitfor([in?,outl}) C

[3a.(in?a"
O(waitfor((inll)) C (inlla" Qcell(in,out,inl,outl,v))])

out l(v, f) "
O(waitfor([outl?}) C

(outl?(~,t) " Qclosedown
3a.(outl?(a,f) " Qcell(in,out,inl,outl,a))]

It ie asserted that the solution to the equation for empty represents the
behaviour of an initially empty queue. Ae in the case of the queue above, Pe and
Pc are used to denote the maxiJnaJ. fixpoint solutions to simultaneous equations.
I.e.'

Fe Q [v<e,c>.<Xe,Xc>(<e,C>)JL
and Fe Q [vc.Xc(c)]

JOO

Therefore, to establish, the correctness of the above development, it must be
proven that

Fe(in,out) 4 Fq(in,out,<>) denoted ny ~(<Fe,Fc>,Pq)

The proof proceeds by stepwise computational induction, see Manna (1974) for
details and restrictions in application.

TO maxe the induction possiPle, it is necessary to prove a stronger assertion. The
following is established simultaneously with the above desired result.

va,c.([3inl,outl.(Po(in,out,inl,outl,a) fpar Fq(inl,outl,c))] c
Pe(in,out))

~

Intuitively, this clause establishes that a cell with element a connected to a
queue with contents c behaves like a queue with contents <a>~c.

Thus (~lj!)(<Pe,Pc> ,Pq) .is the assertion to be proved. It is necessary to establish

(1) (Basis) (~~~~)(ctrue,true>, true)

(2) (Induction step) Vfe,fc,fq.((~lj!)(<fe,fc>,fq) ~
(~\II)(<Xe·Xc•(<fe,fc>)>X.q(fqlll

to conclude that (~lii)(<Pe,Pc>,Pc) holds.

Clearl.y {1) holds.

TO prove {2) assume (~\ll){<fe,fc>,fq) holds.

(~III)(<Xe,Xc>(<fe,fc>),Xq(fqll expands to

1. { "'ai tfor({.in? , out I }) c
[3a.(1n?a ~

0(31nl,outl.(fc{1n,out,1nl,outl,a) fpar fe(inl,outl))] c
fe(d.n,out))

outl{@,t) ~ Qclosedown])

(waitfor({in?,outl}) c
:3a.(.!!!!!!" Ofq(in, out, <a>)) v

outl(hd{o),f)" o;to,., Ofq(in, out, tl(o))
outl(@,t),., <>•<> ~ Qclosedown])

Va,c.([3inl,outl.
(Xc(fc)(in,out,inl,outl,a)
~

Xq(fq)(inl,outl,c))] C
Xe(fe)(in,out))

Clearly, the first conjunct of 1. holds if the following holds.

101

2.. (3inl,outl.(fc(in,out,inl,outl,a) £par ft,(inl,outl)}] c
fe(in, out}}

fq(in,out,<a>)

But 2.. holds by the application of the induction hypot.hRAis.

By considering the full expansion of the second conjunct of 2.. it also holds
through straightforward application of the induction hypothesis and some simple
properties of the combine operator and the fpar operator.

Thus the induction is completed and hence the weaker assertion ~. in particular,
is established.

Finally, from the empty and cell specifications it is an easy task to develop the
CSP-lil<.e code. As the specifications at this level closely characterise the
implementation, ita verification is a straightforward application of the proof
ayste1n. J\.n implementation is given below.

proc empty (Chan in, out) iB
begin

va.r XI
[in?x ->

begin
d:>an inl,outl;
(ca.ll cell(in,out,inl,outl,x) II cal1 empty(inl,outl} }I
ca11 empty(in,out}

end
0 out!(~,true) -> skip]

end;

proc cell (Chan in, out, inl, outl1 var X}l

begin

var Yl
[in?y ->

(inlly; ca11 cell(in,out,inl,outl,K)
0 out!(x,fa1se} ->

begin
var end;
outl?(y,end)l
[end-> ca.ll cell(in,out,inl,outl,y)
0 -.end -> skip]

end

7 • CONCLUSIONS

The semantics ani! proof ayate1n in this paper combine handling of livenesa
properties and compositionality. The rather low level of description which seems
to be enforced by these objectives as well a.s the desire to have the proof system
closely connected to the semantics leads to straightforward although rather
001111plex formulAe, However, as the examples show, the very fact that the proof
system does reflect the structure of programs in a direct way and provides
independent description of components enables proofs to be carried out in a wel1
structured manner at a natural level of abstraction. Usua1ly the structure o£ the
proofs inol!ucee recurring eubfor~nulAe for which natural ad hoc abbreviations can be
suppU.ed. The examples a1so indicate that the proof strategy can be adapted to the
various, e.g. recursive, forma in which specifications can be presented. When used
as a hiera.rct>i~l specification 1Dethod the complexity of the £onnul.ae remains ""'re
or less i.n step with the 1evel of detail arrived at in the development.

fl. Barringt'r ('(o! 102

It is interesting to note that, in contrast to the usual state-based cpo
approaches, in the temporal logic based treatment of recursion given here it is
not necessary to use transfinite iteration as used in Park (1979) to handle
unbounded. non-<leterrniniam. In the state-based cpo approach recursion steps are
represented by iterations, (intermediate) results being seta of states. Part ia 1
computations result in a bottom state and all intermediate information is lost.
This is quite different from the real computation. Thus, in the case of unbounded
non-<leterminiam where there might be no finite bound on the number of iterations
necessary ~o reach a non bottom state, transfinite iteraticn is required. In the
temporal approach here intermediate information is not abandoned. Each level of
iteration fixes the prefix representing that intial part of the computation and
leaves t.he rest·of the sequence unconstrained thus mimicking the progress of the
actual computation. From these observations it is clear that, as all sequences are
of countable length, only countably many iterations are needed.

Further research aims are comparing different fairness
framework and devising a more abstract semantics, e.g.
observable behaviour of components.

'ACKNOWLEDGEMENTS

assumptions in this
only describing the

The authors express their thanks to Willem P. de Roever and Job ZWiers for helpful
and stimulating discussions during the summer when this work was being developed.
'AP thanks Cliff Jones for hospitality in the department of Computer Science at
Manchester University and ICL for providing a visiting fellowship at Manchester.
HB and RK acknowledge the SERC for their financial support under grant GR/C/05670.

REFERENCES

Apt, K.R., Francez, N. & de Roever, W.P. (1980).
'A Proof System for COmmunicating Sequential Processes,
'ACH TOPLAS, Vol. 2, No. 3, pp. 359-385.

de BaXI<er, J.W. (1980).
The Mathematical Theory of Program Correctness
Prentice Hall International.

Barringer, H., Kuiper, R. & Pnueli, A. (1984).
Now You May Compose Temporal Logic specifications,
Proc. of the 16th ACH Symposium on Theory of Computing,
Washington.

Gerth, R. & de Roever, W.P. (1984).
A Proof System for Concurrent Ada Programs,
~ appear tn Science of COmputer Programming.

Hoare, C.'A.R. (1978),
Communicating Sequential Processes,
CACM, Vol. 21, No. 8, pp. 666-677.

Hoare, C.A.R. (1981).
A calculus of Total Correctness £or COmmunicating Processes,
SCience of Computer Programming, Vol. 1, No. 1, pp. 49-72.

Lamport, L. (1983).
Specifying Concurrent Program Modules,
ACH TOPLAS, Vol. 5, No. 2, pp. 19D-222.

Lamport, L. & Schneider, F. {1984).
The "Hoare I..ogic" of CSP, and All That,
ACM TOPLAS, Vol. 6, No. 2, pp. 281-296

Levin, G.M. & Gries, D. (1981).
A Proof Technique for COmmunicating Sequential Processes,
Acta Informatica 15, pp.281-302.

Manna, Z. (1974).
The Mathematical Theory of Computation,
McGraw Hill Book Company.

Manna, Z & Pnueli, A. {1983).
flow to Cook A Temporal Proof System for your Pet Language,
Proc. of the ACM Symposium on Principles of Programning,
Austin, Texas, 10, pp. 101-124.

Misra, J. & Chandy, K.M. (1981).
Proofs of Networks of Processes,
IEEE TOSE Vol. SE-7, No. 4, pp 417-426.

Misra, J., Chandy, K.M. & Smith, T. (1982).
Proving Safety and Liveness of Communicating Processes with Examples,
Proc. of the ACM Conf. on the Principles of Distributed Computing,
ottawa.

de Nicola, R. & Hennessy, M.C.B. (1983).
Testing Equivalences for Processes,
Proc. of the 1oth tCALP, Barcelona,

103

Lecture Notes in computer Science, Vol. 154, Springer-Verlag, pp. l47-l59.

Park, D. (1979),
On the Semantics of Fair Parallelism,
Proc. of the 1979 Copenhagen Winter School on "Abstract Software

Specifications"
Lecture Notes in COmputer Science, Vol. 86, Springer-Verlag, pp. 504-526.

Pnueli, A. & de Roever, W.P. (1982).
Rendezvous with Ada - A Proof Theoretical Vie-w,
Proc. of the MaTEC Conference, Crystal City.

Sistla, A.P., Clarke, E.M., Francez, N. & Gurevich, Y. (1982).
Can Buffers be Specified in Linear Temporal Logic?
Proc. of the ACM Conf. on the Principles of Distributed computing,
ottawa.

Zhou Chao Chen & Hoare, c.A.R. (1981).
Partial Correctness of Communicating sequential Processes
Proc. of 2nd Int. Conf. on Distributed Computing Systems.

ZWiers, J., de Bruin, A. & de Roever, W.P. (1983),
A Proof System for Partial Correctness of Dynamic Networks of Processes,
Lecture Notes in computer Science, Vol. 164, Springer-Verlag.

A Really Abstract Concurrent Model

and its Temporal Logic

Howard Barrinaer(l)
. Ruurd Kuipe~(l)

Amir Pnueli (2)

Extended Abstract
July 1985

(1) University of Manchester, Manchester, England

(2) Weizmann Institute of Science, Rehovot, Israel

105

Abstract. In this paper we advance the radical notion that a computational
model based on the reals provides a more abstract description of concurrent and
reactive systems, than the conventional integers based behavioral model of exe
cution sequences. The real model is studied in the setting of temporal logic, and
we illustrate its advantages by providing a fully abstract temporal semantics for a
simple concurrent language, and an example of verification of a concurrent pro
gram within the real temporal logic defined here. It is shown that, by imposing
the crucial condition of finite variability, we achieve a balanced formalism that
is insensitive to finite stuttering, but can recognize infinite stuttering, a distinc
tion which is essential for obtaining a fully abstract semantics of nonterminating
processes. Among other advantages, going into real-based semantics obviates the
need for the controversial representation of concurrency by interleaving, and most
of the associated fairness constraints.

The research was supported in part by SERC grant GR/C/05760.

Part of the research of the third author was supported by ONR grant N00014-85-
K-0057 while visiting the University of Texas at Austin.

106

1. Introduction

Temporal logic is, by now, a widely accepted formal tool for the specification
and verification of concurrent and reactive systems (see [MPI], [Lal], [01], [HO],
[SMS], [CE], [CM] and many others). The underlying time structure upon which
those systems are based is discrete, and, in the linear temporal logic case, is iso
morphic to the nonnegative integers and models the execution sequences that the
specified program generates.

An important step in the construction and justification of temporal proof sys
tems is the definition of temporal semantics, which constructs for a given program
P a characteristic formula <P p, sometimes denoted by [P] , such that <P p is true
precisely over all the admissible executions of P. Such definitions have been given
for global systems in [Pn1], [MP2], and in a more syntax directed style, suitable
to compositional proof systems in [BKP 1], [BKP2].

When comparing the temporal semantics of concurrent programs with other
semantic definitions we find that they are deficient in one respect. Namely, they
do not achieve full abstractness. Full abstractness ([Ml]) is a most important
criterion which requires that the semantics level of detail should match the desired
level of abstractness. In particular it requires that any two programs that we wish
to consider equivalent, should be assigned identical semantics. For sequential
programs we can easily say that it was the strive towards full abstractness that
led from the overly detailed operational semantics into the much more satisfactory
denotational domain-based semantics.

Consider the following two program segments that represent modules in a
concurrent program:

pl .. X .- I· , X .- x· , X .- 2
'

and

Pz .. X .- 1• X .- X" X - X" X .- 2 .. , , ,

They differ by the number of dummy x := x assignments separating the two
externally observable instructions x := 1 and x := 2. At the qualitative level that
we want to analyze such concurrent programs, these two program segments should
be considered equivalent.

Let us examine whether their temporal semantics are indeed identical. We
consider first the logic L 6 = L(Q,U) presented in [MP1] and other related works.
This logic uses the basic operators 0 (next time) and U (until), over an integer-like
execution sequence.

Without giving the precise temporal semantics of P 1 and P 2 we can still
explain how they differ. The temporal semantics of P2 (in the L 6 logic) requires
that in any computation sequence of P2 , the x = 1 and x = 2 are separated by at
least 3 computation steps (or two intermediate states). In P 1 the lower bound is
only two computation steps. Consequently the L6 semantics distinguishes between
P1 and Pz, and hence is not fully abstract.

107

Lamport perceived this lack of abstractness in the Lffi logic and attributed
the problem to the next-time operator. Consequently, the temporal logic that he
works with ([Lal], [OL]) is L+ = L(U), which uses only the until operator (or
an appropriate equivalent). He also formulated the requirement that, in order to
be abstract, the logic must be insensitive to stuttering, which he defined as finite
consecutive duplication of some states. Indee.d any execution sequence of Pz may
be obtained from some execution of P1 by duplication of some states, and the
semantics that would be assigned to P1 and P 2 in the L + logic are identical:

where we use the defined operator pU + q = (p /\ pUq).

Unfortunately, while this next-less logic provides an abstract semantics for
finite processes, i.e., having bounded executions, it raises new problems when we
go to infinite processes. We may interpret the view represented by Lamport's
approach by saying that there is no absolute time scale against which executions
are measured. Time advances only when there is a (state) change. Clearly, such
a view would naturally ignore any finite periods of no change. However, by the
same token, it would also ignore (or collapse) infinite periods of no change, which
is unacceptable.

Consider the following recursive procedure

P <:= [x := x; P]

where it is assumed that the process P owns the variable x, in the sense that P is
the only process which may modify x.

The co=on association of semantics to such a procedure is to form a fixpoint
equation for a temporal predicate, where the right hand side of the equation is
obtained from the semantics of the procedure's body. We therefore look for the
maximal solution to the equation:

X= 3u.[(x = u)U+((x = u) /\X)]

It is not difficult to see that the maximal solution is X = T, i.e., all possible
behaviors, in particular those that arbitrarily modify x. This can be explained by
the fact that the procedure P produces infinite stuttering which the L+ semantics
consumes in zero time, and leaves the rest of the execution unrestricted.

If in comparison we consider the semantics assigned to this process by the LfJ!
logic, we replace u+ by U6 ' defined as rU 8 q = r /\ O(rUq). Then the solution is

X= 3u. D(x = u)

i.e., x is continuously preserved, which is what we intuitively expect.

Thus we find that Lffi is unsatisfactory because it is sensitive to finite stut
tering, while L + is unsatisfactory because it is insensitive to infinite stuttering.

108

These difficulties are not specific to temporal semantics. To the best of our
knowledge, no adequate compositional semantics of concurrent programs which
satisfies all of the four following requirements, has yet been proposed.

1. Allows nondeterminism in the processes.

2. Treats fair parallelism.

3. Is fully abstract, in particular is insensitive to finite stuttering.

4. Properly treats divergent processes, in particular infinitely stuttering pro
cesses.

Most of the works that did propose semantics of concurrent programs are
usually deficient in points 2 or 4 or both. Point 4 is of course highly subjective,
and we have our own interpretation of what the "proper" treatment of nonter
minating processes should be. By this interpretation nontermination should not
be considered catastrophic, and a silently divergent (infinitely stuttering) process
should have no effect on any process running in parallel, except when termination
of the full system is considered, which we ignore in this treatment. Thus if we
define the silently divergent process:

1 = [P where P ¢o [skip ; P]]

we would like to have

(1 II Q) ~ Q

for any process Q.

Usually, in works such as [HM], [dBMO], [Br], the silently divergent process
1 is treated either as catastrophic (the Smyth view) or as chaos (completely un
specified process) which leads to equivalences of the form

(1 II Q) ~ 1.

In our previous work ([MP2], [BKP1], [BKP2]) using LfJJ we usually achieved
requirements 1, 2, and 4 but had to give up on 3. In this paper we suggest that
linear temporal logic with the time structure of the (non negative) real numbers
provides a more abstract logic than that of the non negative integers, and succeeds
in meeting all the four criteria above.

2. Temporal Logic of the Reals (TLR)

Let V = LUG be a set of variables which is partitioned into L = {y 1 , ••• } the
local variables, and G = { u 1 , ••. } the global variables. For simplicity we assume
that some of the variables range over a data dom~in, and the others, which we call
propositions, range over the boolean domain { F, T}.

109

A model over V is an assignment a that assigns to each variable v E V and
each non-negative real number t 2: 0, a value a(v,t) from the appropriate domain.
The assignment a is required to satisfy:

a) Uniformity of global interpretation -
For each global variable u E G, a(u, t) is independent oft.

b) Finite variability -
for each local variable y E L there exists a denumerable sequence:

with tn --+ oo

such that the value of a(y,t) is uniform within each open interval (t;,t;+I),
i.e., for every t,t', if t; < t < t' < ti+I then a(y,t) = a(y,t').

Condition b) guarantees that there could be no infinite variability within a
finite interval, and that the interpretation of each variable can be decomposed into
countably many open intervals of constant value. Note that we do not restrict the
values at the break-points t;, which could be different from the values of their left
or right neighbor intervals.

The temporal logic we consider is based on the operators IJ. (until) and S
(since) ([LPZ]).

We define the value of terms and state formulae at a nonnegative real instant
t of a model a by evaluating them pointwise, i.e., using a(v;, t) whenever the value
of v; is needed. For a state formula rp, we denote by rp(a, t) the value obtained by
such pointwise evaluation at point t. then we define satisfiability as follows:

(a,t)f=cp
(a,t) f= ''P

iff cp(a,t) = T where cp is a state formula
iff (a, t) F 'P

(a,t) f= ('PI V 'P2)
(a,t)f=cpUlj;

iff (a,t) f= 'PI or (a,t) f= 'P2
iff 3t" t < t" such that (a t": f= 1/; and

for ~very /t, t < t' < t", (~' t') f= 'P
(a,t)f=cpSlj; iff 3t", 0 :S t" < t, such that (a, t") f= 1/; and

for every t', t" < t' < t, (a, t') f= <p

Note that differently from the integer-based TL, the basic until operator cpUlj;
is strict and guarantees a non empty cp interval. We may also define some derived
operators:

rplll/;=•(rpvl/;)
0 'P = TUcp
[±] 'P = ...,0 ''P

cpU +lj; = cp II cpl] 1/;

'P --+ 1/; = { ''P v 1/;)
0rp = TScp
Elrp = ...,() ''P

The derived temporal operators 0 , [±] have similar meaning to that of
their integer-based counterparts, except that in real temporal logic they are strict,
meaning that the present (point t) is not considered as a part of the future.

110

Two additional logical operators that are needed are quantification and fix
point.

The semantics of the existential quantifier is given by:

(a,t) f= :lv.<p iff there exists a model a' differing from a by at most
the assignment given to v, such that (a',t) f= <p

Note that we allow quantification over both global and local variables, in
contrast to [MPl] where quantification is allowed only over global variables. When
quantifying over a local variable y, the requirement that a' be a model according
to the definition given above implies that v satisfies the finite variability condition.

Universal quantification may be introduced as a derived operator:

In order to define the fixpoint operator it helps to slightly shift our view of the
semantics of temporal formulae and define for each formula <p and a non-negative
real number t ~ 0, their extent (validity-set) given by:

E(<p,t) {ai(o:,t)f='P}

This definition associates with each formula <p and time instant t ~ 0, a set
of all the possible models that satisfy <p at t. This leads to a view by which each
formula <p defines a function E'P from R+ (the non-negative reals) to .M., the set
of all models (over V). Let D = -+ M] denote the set of all functions from
R+ to .M.. It is not difficult to see that it is a complete lattice, actually a complete
boolean algebra. The ordering on D is closely connected to implication between
formulas. Thus <p ~ 1/J (when interpreted as elements of D) iff <p -+ 1/J is valid.
Consequently the minimal element of D is F == .Xt.0 and the maximal element of
D is T .Xt . .M..

The logical operators may now be viewed as functions from D to D. Thus
for everytwo elements eh e2 E D, we may express the operators of disjunction and
until by:

e1Ve2 e1 Uez .Xt.{aiaEet(t) oraEe2(t)}

e1Ue2 = .Xt.{a I :lt"[t < t 11 ,o: E e2(t") and Vt',t < t' < t",a E e1(t')]}

'We can show that all the operators defined above excluding -. are monotonic,
while is anti-monotonic over D. Consequently, we consider equations of the
form:

X 'P(X)

where X is a local proposition variable, and <p is a temporal formula in which all
instances of X are positive, i.e., encompassed by an even number of negations. In

111

such a case this equation is known to have both a minimal and a maximal solution.
We denote them respectively by J.LX.rp and vX.rp.

The fixpoint theorem that ensures the existence of the minimal and maxi
mal fixpoints also gives an alternative characterization of these fixpoints as the
limit of successive approximations. We define approximations of two kinds; V
approximations that approximate the minimal fixpoint and /\-approximations that
approximate the maximal fixpoint.

The starting point for both is:

rp ~ (X) = rp ~ (X) = X.

In general, the approximations have to be carried to infinite ordinal orders. For
non-limit ordinals, which also covers the finite case we define:

rp~+ 1 (X) = rp(rp~(X)), and rp~+ 1 (X) = rp(rp~(X))

For a limit ordinal /3 we define:

rpe(x) = v rp~(X) and rp~(X) = A rp~(X)
0. <(3 o.<(3

The characterization by limits of approximations states that for each mono
tonic operator rp, there exist two ordinals a and /3, such that

J.LX.rp = rp~ (F)

vX.rp = rp~(T)

An interesting special case is when the operator rp is continuous. Since we are
interested in both minimal and maximal fixpoints, there are two different types of
relevant continuity. An operator rp is defined to be V-continuous if it satisfied:

rp(v pi) = v rp(pi)
i<w i<w

for any sequence of temporal predicates p;, i = 0, 1,... . It IS defined to be
!\-continuous if it satisfies:

rp(A pi) = A rp(pi).
i<w i<w

Consider the equation:
X:= rp(X).

If rp is V-continuous then J.LX.rp = rp'(:(F), and if it is A-continuous then vX.rp =

rp:;((T). This means that when continuity of the right type is ensured then it is

sufficient to carry the approximations only up to a = {3
ordinal.

112

w, the first infinite

It can be established that the operators 0, 0 and XJLX2 , XJiX2 with
respect to X2 are V-continuous, while EJ, EJ and XlLX2, X1SX2 with respect
to X1 are /\-continuous. The boolean operators V, 1\ are both V-continuous and /\
continuous. Combination of the operators of the two kinds may lead to operators
which are monotonic but not continuous.

One result of this characterization is that even if <p is monotonic but not V
continuous (/\-continuous), but X= rp~(F) (rp~(T)) satisfies the equation X=
rp(X), then it is a minimal (maximal) fixpoint solution to the equation.

As a simple example consider the equation

X= 0 (p 1\ X)

Its maximal fixpoint can be obtained by approximations. Denoting rp(X) =
~ (p 1\ X), we can show that <pi (T) holds at t iff there are i distinct time instants
t < t1 < ... < t; such that p holds at each of the t 1 , .•• ,t;. Consequently rp~(T)
holds at t iff there are infinitely many points ahead oft at which p is true. In real
temporal logic this leads to:

rp~(T) = (EJ0 p v 0 (pUT))

It is not difficult to see that:

rp~ (T) := 0 (p 1\ rp~ (T))

We conclude that:

vX.~ (p 1\ X) = ((±] 0 p v 0 (pUT))

On the other hand, the minimal fixpoint of this equation is F. This is due to
the fact that F satisfies the equation and is also the minimal element of D. We
thus have:

J.LX. 0 (p 1\ X) := F

An important observation is that all the operators introduced respect the finite
variability restriction. This means that the finite variability restriction holds not
only for the propositions and variables, but also for any temporal formula defined
over them.

113

3. Axiomatic Characterization of the Real Temporal Logic

Whenever a logic is introduced and recommended as a tool for formal rea
soning about programs, an essential part of this recommendation should be a
deductive system that supports sound reasoning within the logic itself. Since the
full logic, including data variables and predicates is clearly not finitely axiomati
zable, we will introduce the deductive system we propose in steps, indicating the
step at which we lose completeness and decidability.

The Propositional Fragment

The propositional fragment is obtained by requiring that all the variables in
V are propositions, i.e., range over {F, T}. In this case global quantification can
be eliminated. This is because for a global proposition u:

3u.<p(u) = <p(T) V <p(F).

Consider first the language without (local) quantification or fixpoint opera
tors. We propose the following axiomatization:

FO. All substitution instances of propositional tautologies.

Fl. [±] ('P--> 1/;) --> {[<pUO--> 1/;UO]/\ [OU<p--> OU1j;]}

F2. 'P 1\ OU1j;--> OU[1/; 1\ e5'P]

F3. <pU1j; = ['P 1\ <pU1f;]U1/;

F4. <pU1j; = <pU[<p 1\ <pU1f;]

FS. (<pU1/;) 1\ ·(OU1j;)--> ('P 1\ ·O)U1/;

F6. <pU1j; 1\ OUp--> [('P 1\ O)U(1/; 1\ p) v ('P 1\ O)U(1/; 1\ 0) v ('P 1\ O)U(<p 1\ p)]

Six additional axioms Pl-P6 are obtained as the mirror images of Fl-F6,
that is, by interchanging in each axiom [±] with El and U with 5.

Axioms Fl and Pl state that the U and 5 operators are monotonic in both
arguments.

Axioms F2 and P2 specify the relation of reflection holding between past and
future. Axioms F3, F4 and their past counterparts characterize the time structure
as being dense, i.e., between every two instants there exists an additional instant
distinct from both. To see this, consider a simpler version ~ <p --> ~ ~ <p which
also characterizes density. It certainly does not hold in integer-based TL, when
we interpret ~ <p as QO<p. Axioms F6 and P6 state that the time structure is
linear. Essentially it says that if both 1j; and p are bound to happen, then they
will either happen simultaneously or one will precede the other.

F7. [±] 'P--> ~ 'P

P7. ElF v 0EJF

114

Axiom F7 states that the future is unbounded while P7 asymmetrically states
that the past does have a definite starting point.

the proposed system includes the following inference rules:

Rl. Modus Ponens: f- tp, f- (tp--+ !/;) => f- !/;.

--ttz: -een-erahzatio-n~ · -~ f-- I±J tp, f--ET(p.---- -----·-- ---

the system consisting of axioms FO-F7, Pl-P7 and rules Rl, R2 is taken
almost verbatim from [Bu], where it is stated that it forms a sound and complete
axiomatic system for the considered fragment of propositional TL over the rational
half line Q + = { r E Q I r ~ 0}.

In order to characterize the real half line lR + we usually add a completeness
axiom. This axiom states that any (Dedekind) cut defined by a change of a
proposition, say from T to F, identifies an instant belonging to the structure which
marks the transition point. In our case, the requirement of finite variability already
ensures that any change in value of a variable y must be associated with some node
t; that marks the transition point. Consequently completeness is superceded by
the finite variability requirement represented by the axioms:

F8. tpUT v (•tp)UT

P8. (0 T) --+ tpST v (•tp)ST

These axioms state that for every formula tp and instant t 2 0, there is always
an open interval to the right of t ({ t' I t < t' < t"} for some t", t < t") in which
the value of tp is uniform, and if t > 0, also an open interval to the left of t in
which tp is uniform.

A consequence of the fact that finite variability implies completeness is that,
relative to the language TLR, the class of models based on the reals is equivalent
to the class of models based on the rationals. This means that a TLR formula is
satisfiable by a real model iff it is satisfiable by a rational model. Consequently
we may interpret the R-of TLR as standing ·fe·r· either -the Reals or the Rationals:

Consider next the introduction of the fixpoint operators to our system. Since
the minimal and maximal fixpoint operators are interdefinable, we choose as basic
the maximal fixpoint operator. It is controlled by the following axiom:

XL vX.tp(X) := tp(vX.tp(X))

i.e., the maximal solution to the equation X= tp(X) satisfies the equation.

A rule associated with the fixpoint operator is :

R3. f- 0--+ tp(O) => f- 0--+ vX.tp(X)

This rule states that vX.tp(X) is the maximal solution to the equation X--+
tp(X), and hence every other solution, such as 0 above, is smaller than vX.tp(X) .

The minimal fixpoint can be defined by:

115

The completeness of the system up to this point is discussed in [LP].

The most complex operators in the language are the quantifiers. Actually,
the fixpoint operators can be defined by means of quantifiers. Introducing the
abbreviation:

we can express vX.rp(X) by the following formula:

:lq.[q 1\ Oc(q) 1\ 'rip. 0(Oc(p) __, O(p __, q))]

where c(r) is given by r = rp(r).

This formula explicitly states that q holds now, q satisfies the equation E: at
all points, and any other p satisfying E: at all points is necessarily smaller or equal
to q.

The axioms controlling the quantifiers are similar to those presented in [MP3]:

QFL :lp.[rpUlJ!] = rpU(:lp.lJ!)

where p is not free in <p.

The additional axiom QPl, is the past counterpart of QFl.

Q2. V'p.rp(p) --> rp(B)

where B is any formula free for p in rp.

We also have the following rule:

R4. r- 'P __, 7Ji => r- 'P __, V'p.lJ!

where p is not free in <p.

For the proper definition of the semantics of programs we should be able to
establish the existence of propositions that have an infinite variation over the full
half line.

For a formula <p, we define the following abbreviations:

Rise(rp) = [(•rp)S(T) v (•rp)] 1\ ['P v rpUT]

Rise(rp)is true at t ~ 0 iff t is a transition point at which <p changes from F toT.

Fall(rp) = Rise(•rp).
Ch(rp) = Rise(rp)v Fall(rp)

Thus Ch(rp) is true at t ~ 0 iff <p changes its value at t.

Clock(q) = [[±] ~ q 1\ O(q __, (•q)UT)]

116

A proposition is called a clock if it is true at infinitely many points, and whenever
it is true it is immediately false at a right neighboring interval. This implies that q
is true at countably many isolated points (never at an interval) and false elsewhere.

We add the following axiom:

c. 3q.{Clock(q) A O(Ch(rp) ---> (•Ch(rp))U(q A ·Ch(rp)))}

This axiom states that for any formula rp there exists a clock q that becomes
true (ticks) at least once between every two consecutive changes in rp.

The questions of decidability and completeness of this axiomatic system for
the propositional fragment of TLR will be discussed in [LP], hoping to establish
positive answers for both.

A trivial extension of the proposit ional fragment, which is still decidable, is
obtained by allowing a single fixed data domain D of finite cardinality.

The General Logic

As soon as we allow data domains of unbounded cardinality, the logic becomes
highly undecidable and not finitely axiomatizable. In that case we have also to
consider quantification over global variables. This quantification obeys axioms
QFl, QPl, Q2 and rule R4 as well.

A formula 'P is called global if it depends only on global variables and propo
sitions. For global formulas rp we have the following axiom:

G. 'P = O'P

4. A Programming Language and Its Operational Semantics

We introduce a simple programming language of processes which communicate
by shared variables. since we want to emphasize their continuous behavior rather
than the result they yield on termination, we will not allow them to terminate.

Assuming that the syntax for terms and conditions is understood, the follow
ing recursive definition describes the syntax of processes:

Idle:

Call :

Skip:

rest is a process that performs no further action.

call P represent a recursive call to a process P within its body.

If 1r is a process then so is skip; 1r

Assignment:

If y is a data variable, e a term and 1r a process, then y := e; 1r is a process
that first assigns e to y and then proceed to perform 1r .

117

Conditional:

k

If 7rt, .. . 11'"k are processes and c1 , •• • , Ck are conditions, then [. 0 c; -+ 7r;J
t=l

Parallel:

is a process that non-deterministically chooses a direction i such that c;
is true and then proceeds to perform 11'";, for some i, i = 1, ... , k.

If 71'" 1 , 11'"2 are two processes and yt, y 2 two disjoint sets of data variables,
then
[own yt;7r1 llown y 2;rr2] is a process that performs 7rt and 11'"2 in paral
lel. The own declarations partition the available variables into two sets
associating with each process the set of variables it is allowed to modify.

Data Variables Declaration:

If 7r is a process then so is new y; 7r, declaring a set of new variables y
and then proceeding to perform 7r.

Process Declaration and Activat ion:

If Pis a process variable and B a process (body) then [P where P <== B] is
a process that begins to perform Band recursively reactivate B whenever
it meets a call to P. Note that our recursive processes do not admit
parameters, and also never return from a call.

A complete process will have the general form own y; 1!", where the preceding
own declaration identifies the variables, not locally declared in 71'", which 7r may
modify.

Given a complete process we define for each constituent subprocess p, the set
mod(p) which is the set of variables that p actually modifies or declares owning.

This is defined by the following equations :

mod (rest)= 0
mod (call P) = mod(B) when the call P is

contained within a P <== B declaration.
mod (skip;7r) =mod(rr)
mod (y := e;7r) =mod(7r) U {y}

k k

mod ([i£l
1
c;-+ rr;]) = U mod(7ri)

i=l
mod (own y; 7r) =mod(rr) U {y}
mod (7rt 1111'"2) =mod(rrt) U mod(rr2)
mod (new y; 7r) =mod(rr)- {y}
mod (P where P <== B) =mod(B)

These equations are recursive, so we look for their minimal solution .

We may now define for each subprocess p the set owns(p), which is the set
of variables that the context in which p occurs has declared as owned by p. The

computation of these sets proceeds in a top-down fashion.

If p =skip; 1r or p = [y := e; 1r], then
owns (1r) =owns (p)

k

If p ==: [,.,Rc; ""7 1r;j, then

owns(1r;) =owns(p) for each i = 1, ... , k.

118

If p = [own y 1
; 1ft II own y2

; 1r2], then we require that owns(p) = y1 U y2 and
define

owns(1r;) = yi, fori= 1, 2

If p = new y; 1r, then
owns(1r) =owns(p) U {y}

If p = [P where P <= B],
then owns(P) = owns(B) = owns(p) U U owns(caiiP)

callPEB

This definition is again recursive and we look for the minimal solution.

A complete process own x; p is well formed if:

a) No declaration of the form new y falls under the scope of another declaration
for some variable in y. Violations of this condition can always be corrected
by renaming.

b) Every call P process occurs within the body of a declaration for P.

c) For every subprocess 1r in p mod(1r) ~ owns(1r).

d) All the free variables in p are contained in x.

We next define operational semantics for this language. We assume that each
subprocess within the complete process own x; p is uniquely identifiable. We define
a labelled transition relation representing the possible transformations that can be
effected in one computation step. Assume a set of states S, each of which is a
mapping from the currently declared variables to their values. A configuration is
a pair <1r, a> consisting of a process 1r and a state a E S.

7r
For 1r = [skip ; p] or 1r = [own y ; p], <1r, a> -> <p, a>

7r
For 1r = [y := e; p], <1r,a>-> <p, (a; y:a(e))>

where (a;y:a(e)) denotes the state obtained from a by assigning the value of e
evaluated at a to y.

k

For 'If = [. 0 c; ->pi],
•=1

7r
<1r,a>-> <p;,a>

for each i = 1, ... , k such that a(c;) = T.

l 7r I (-1) For 1r =[new y; p, <1r,a>-> <p, a;y :1. >

119

where p' and 1)1 are obtained from p and y by systematically renaming all the vari
ables in fi that are in conflict with the currently declared variables, i.e. the current
domain of a. Again (a;y': ..L) denotes the state obtained from a by augmenting
the domain of a by y' and assigning to them the undefined value ..L.

For 1r = [Pt II P2], we have

A I II I <1r,a>--> <p 1 P2 , a>

A
for each transition <p 1 , a> ---+ <p~, a'>, and

A II I I <7r,a>---+ <p, P2' a>

>.
for each transition <p2 , a> ---+ <p~, a'>

7r
For 1r = [P where P <= Bj , <1r,a>--> <B,a>

For 1r = call P, appearing within the body B of a declaration P <= B ,
7r

<1r,a>---+ <B,a>.

A
If <1r,a>--> <1r',a'> for some 1r 1 ,a', then we say that the label (process) A

is enabled in the configuration <1r, a> .

An execution sequence corresponding to the initial configuration <1r0 , ao> is
a labelled transition sequence:

such that:

a) Every transition appearing in S is justified by the definition above.

b) The sequence S is maximal, i.e., it is either infinite or terminates in a con
figuration <1rk.ak> on which no subprocess of 'Irk is enabled.

c) The sequence S is weakly fair. This means that we exclude infinite sequences
in which for some A and i ~ 0, A is continuously enabled beyond <7r;,a;>
but never taken, i.e ., A is enabled in each <7rj,aj>, j > i, but for all j > i,
Aj i=- A.

We define S-x, the set of x-states, as the set of all states whose domain is x.
Let 1r = [own x; pj be a complete process, and s0 E S-x. A behavior of 1r on s0 is a
finite or infinite sequence of x-states:

8: s0 , s 1 , . . .

such that there exists an execution sequence:

120

with 1ro = 7r and Si = O'i 1-z, i.e., O'i restricted to the domain x, for each i = 0, 1,

This definition of behavior is still too detailed and may contain redundant
details such as stuttering. Consequently, we define the notion of a reduced behauior
which eliminates stuttering altogether. A reduced behavior corresponding to a
complete process 1r and an initial state s0 , is a finite or infinite sequence of x
states which is obtainable from a benavioro f 1r on so by deleting·a.ll consecutive
duplicates. Obviously such a deletion may transform infinite behaviors into finite
reduced behaviors. Let B(1r,s0) be the set of all reduced behaviors of 7r on s0 •

Then the operational semantics we assign to a complete process 1r is a mapping
from initial states to reduced behaviors given by:

This definition leads directly to a definition of an induced observational con
gruence given by:

The processes 1r and p are operationally congruent, 1r ~ p iff for every context
C(·)

(1) C(1r) is a well formed complete process iff C(p) is.

(2) In the case that both C(1r) and C(p) are well formed complete processes,
0 [C(7r)] = 0 [C(p)].

As an example of this congruence we observe that

(rest) ~ [OF---+ skip] ~ (P where P <= P)

We may now reformulate the challenge we posed in the introduction as: Find a
compositional semantics which is fully abstract relative to the operational congru
ence defined above. We claim that the real temporal semantics that we introduce
in the next section answers this challenge.

5. A Real Temporal Semantics

Let own x; 1r0 be a well formed complete process. Let us associate a temporal
proposition variable Xi with each process variable Pi, i = 1, ... k defined in 1r0 .

Also assume that we have computed for each subprocess p appearing in 7ro, its
ownership set owns(p) determined by its context.

In the section dealing with temporal logic, we have defined the formula Ch(cp)
that marks the transition point at which a formula tp changes its truth value. We
extend this formula to mark a change in a data variable y by:

Ch(y) = .3u.Rise(y = u)

121

This marks the point of a change from y f. u to y = u. We also define the
idling formula for y:

t(y) = ·Ch(y).

The temporal semantics of a process :rr, denoted by [:rr] , is a temporal formula
that characterizes its behavior in an abstract way. In the following definitions we
use the abbreviation t = t(owns(:rr)) to denote that all the variables owned by :rr
are not presently changed. We provide one clause of the definition for each type
of subprocess:

• [rest] = t A [±] t

This implies that the main effect of the process rest is to preserve forever the
values of variables it owns.

• [callP;] = ,u+ X;
where X; is the proposition variable we have associated with the process variable
P;.

• [skip;p] = ,u+ [p]

• [y := e; p] =
t A 3u[tU(t A (u =e) A tU{(y = u) A t(owns(:rr)- y) A tU [p] }]

This formula identifies a first point in which e is evaluated, and then a second
point at which y is assigned the obtained value while all the other variables owned
by :rr are still preserved.

k

• [.D Cj -+ Pi]]
J=l

k k

tA{[G3tA 1\ G3~·c1]v VtO.[c;A [p;]]}
j=l j=l

This definition considers the possibility of deadlock at :rr if each condition is
infinitely many times false. the other possibility is the identification of a true c;
followed by the execution of Pi·

• [pl II P2] = [pl] A [p2].

We consider the simplicity of this clause an important feature that may well
justify the complexity of the other clauses .

• [newx;p] =tA (1\ G3t(y)) A3x(tU [p])
yEOwns(rr)nx

The main effect of the declaration of new variables is expressed by the exis
tential quantification over the newly introduced variables. A secondary effect is
that all the variables that :rr owns but have been covered or redeclared in x, i.e.,
variables in owns(:rr) n x, will never be modified again. This is because any ref
erence made by p to one of these variables is interpreted as addressing the newly
declared variable of that name.

122

In principle, the natural definition we would expect for process recursion is:

vX.[tU+ [B]].

However, as we explained in the introduction, if B contains an unguarded path,
i.e., a path with no change in the values of variables, from P to call P, the maximal
fi.xpoint of the naive equation will include undesirable behaviors. To ensure that
all paths to X; in [B] will contain a change, we impose an external clock q which
is required to change at least once on each recursion. By existentially quantifying
over it, we abstract away any particular features that may be associated with a
specific clock.

Because of space limitations we present the main theorem of this paper with
out a proof. A detailed proof will be contained in a technical report presenting a
fuller version of the paper.

Theorem:

The real temporal semantics presented in this section is fully abstract with
respect to the relation of operational congruence.

6. TLR As a Working Tool

The complex formulae appearing in the definition of the temporal semantics
of processes may have created the impression that TLR is a complicated formalism
to work with. This impression is unjustified, and the apparent complexity should
be attributed to the efforts of constructing a compositional semantics of concurrent
processes. In fact, for actual reasoning about programs, TLR is quite comparable
to integer-based temporal logic, and the added feature of full abstractness makes
it an attractive alternative.

Consider for example the following process:

1r: own x; P where P <= [x := x + 1; Pj

An obvious property of this process is expressed by the formula (x ~ 0) -+

EB (x 2: 0). Let <p denote x ~ 0. In the integer-based TL we establish the
conditional invariance of <p, i.e ., that once it holds it is preserved forever, by
showing that all the atomic actions of 1r preserve <p. Here we do something similar.
First, we observe that after some simplifications [1r] = 0 where

0: vX.:lu[(x = u)U+(x = u + 1)U+[(x = u + 1) 1\ X]]

123

We have eliminated in this expression the external clock q, since the process itself
guarantees a change on each iteration. This elimination can be formally justified .
Obviously 0 satisfies its equat ion :

1. e = 3u[(x = u)U+(x = u + l)U+[(x = u + 1) A 0]]
From which it is not difficult to establish:

2. 0 A rp-+ {rpU+[Ch(x) A rpU+(0 A rp)]}
This can be interpreted as showing that 0 A rp satisfies the equation

Consequently, using rule R3 and the existential version of R4 we obtain

3. 0 A rp-+ 3x.vY[rpU+[Ch(x) A rpU+Yj]
An important theorem of TLR is:

4. {3x .vY[rpU+[Ch(x) A rpU+Y]]} = (rp A El rp)
We thus obtain

5. 0 A rp -+ [±] rp
Or equivalently

6. [n] [rp Elrp]
Using the notation of [BKPl] this is representable as

7. [7r]{rp [±] rp}
which means that all executions of 1r satisfy the temporal property rp -+

[±] rp.

Since the only step in this proof that depends on the specific 1r and rp consid
ered, was the derivation of 2 from 1, we can condense all the others into a derived
proof principle.

Let 1r be a process of the form:

1r: own y; P where P ¢: B

Denote by [B] (X) the temporal semantics of B, where dependence on the propo
sitional variable X has been made explicit. Then we have the following rule:

e = [B] (0) 1- 0 A rp {rpu+[ch(q) A rpU+(0A rp)]}

[7r]{rp [±] rp}

A slightly more general rule is needed for the case that B is not guarded.

Inspecting the passage from 1 to 2 above, we see that what is needed is
establishing that rp is preserved along any computation path in B leading to any
call P appearing within B. We also observe that it is very similar to the rule
PROC handling recursion in [BKPl].

124

It is clear that many more derived rules of this kind should be developed
before we can use TLR with the same ease and convenience now attained in the
integer-based TL . However, we do feel confident that such high-level rules can and
will be developed.

7. An Example of Specification and Verification

For a more comprehensive example we consider Peterson's algorithm for mu
tual exclusion ([Pe]).

In a slightly extended version of our programming language, the algorithm
can be presented as :

(YllY2,t,in1,in2) := (F,F,F,F,F); [Pt II P2]

where

P1: own Yh in1,! t ; [Pt where P 1 -¢= Et]

P2: own Y2, in2, i t ; [P2 where P2 -¢= B2]

B1: [(T--+ call P1)
0
(T --+ Yt := T; t := F ;

[Qt where QI -¢= CI])]

B2:[(T--+ call P2)
0
(T --+ Y2 := T; t := T ;

[Q2 where Q2-¢= C2])]

C1: [(Y2 1\ -.t -+ call Q!)
0
(-.y2 V t --+ in 1 := T; in 1 := F;

Yt := F; call P!)]

C2: [(Yt 1\ -.t --+ call Q2)
D
(-.yl V -.t -+ in2 := T; in2 := F;

Y2 := F; call P2)]

The extension we introduced to our programming language is that both p1

and p2 are allowed to modify t, but each in its own way. The notation ! t means
that Pt and its subprocesses are only allowed to set t to F, while P2 is only allowed
to set t to T. The variable in1 represents the entry and exit of P1 in and out of
its critical section. Similarly, in2 represents the criticality of P2 •

As a result the 1 formula for p 1 and P2 should read respectively:

z1 = ·Ch(yl) A •Ch(int) A--, Fall (t)

tz = •Ch(y2) A ·Ch(in2) A--, Rise (t)

125

Writing the semantics of the two processes, it is possible to infer from them
the following modular specifications:

[pt]{ O(in1 --> 81) A O(in1 A 62--> t)}

[P2]{ O(in2--> 62) A O(in2 A 82--> •t)}

where 01 and 62 characterize the history of a point in which p1 and p 2 are ready
to enter their critical section (signified by setting in1 and in2 toT).

01: t 1 A t 1 S (•t A yi)

62: t2 A t2S(t A Y2)

It is easy to see that when we combine these specifications we can obtain (by
contradiction):

which establishes mutual exclusion.

8. Conclusions

The real-numbers based model and its associated real temporal logic, seem
to achieve a higher degree of abstractness than the one provided by the integers
based model. The price does not appear to be excessive since the basic structure
of temporal formulae, specifications and proofs is not significantly altered. The
gain is obvious since it provides a much cleaner and more natural semantics. This
becomes even more apparent when illustrated on a communication based process
language such as CCS. It can be shown that the real temporal semantics of CCS
attains the same standard of abstractness set up in the algebraic treatment of CCS
and its derivatives ([M2J, [HMJ, [dNH]).

Acknowledgements

We would like to gratefully acknowledge the support given by the Weizmann
Institute to the visit of the first two authors. Many thanks are due to L. Lamport,
M. Chandi and J. Misra for most illuminating discussions, to A. Emerson and
L. Zuck for friendly help and advice, to the participants ofE.W. Dijkstra's Tuesday
afternoon club for many helpful comments, and last but not least to C. Weintraub
for her most speedy and efficient typing.

126

References

[BKPl] Barringer, H., Kuiper, R . , Pnueli, A.- Now You May Compose Tem
poral Logic Specifications, 16th STOC (1984) 51-63.

{B-KP-2) Barringe-r-, H-., Kuip.er, R.,-Pnueli, A~ - _A CompoJ>itio_nal Temporal
Approach to a CSP-like Language, Proc. of IFIP Conference: The
Role of Abstract Models in Information Processing, Vienna (1985).

[dBMO] de Bakker, J.W., Meyer, J.-J .Ch ., Olderog, E.-R.- Infinite Streams
and Finite Observations in the Semantics of Uniform Concurrency,
12th ICALP (1985) 149-157.

[Br] Brookes, S.D. - A Semantics and Proof System for Co=unicating
Processes, 2nd Workshop on Logics of Programs, LNCS 164 (1983)
68-85.

[Bu] Burgess, J.P. - Basic Tense Logic, in D. Gabbay and F. Guenthner
(eds.) Handbook of Philosophical Logic, Vol II, D. Reidel Publishers
(1984) 89-133.

[CE] Clarke, E.M., Emerson, E.A. - Design and Synthesis of Synchroniza
tion Skeletons Using Branching Time Temporal Logic, 1st Workshop
on Logic of Programs, LNCS 131 (1981) 52-71.

[CM] Clarke, E .M., Mishra, B. - Automatic Verification of Asynchronous
Circuits, 2nd Workshop on Logics of Programs, LNCS 164 (1983) 101-
115.

[HM] Hennesy, M.C.B., Milner, R. - Algebraic laws for Nondeterminism
and Concurrency, JACM 32, 1 (1985) 137- 161.

[HO] Hailpern, B., Owicki, S. - Modular Verification of Computer Com
munication Protocols, IEEE Trans. on Communications, COM-31, 1
(1983) 56-68 .

[HPJ Hennesy, M.C.B., Plotkin, G.D. - Full Abstraction for a Simple Par
allel Programming Language, Mathematical Foundations of Computer
Science, LNCS, 74, Springer Verlag (1979) 108-120.

[JJ Jones, C .B.- Software Development : A Rigorous Approach, Prentice
Hall International Series in Computer Science.

[Lal] Lamport, L. - What Good is Temporal Logic?, Proc. IFIP Congress,
Paris (1983) 657-668 .

[La2] Lamport, L.- Specifying Concurrent Program Modules, ACM TOP
LAS 5, 2 (1983) 190- 222.

[LP] Lichtenstein, 0 ., Pnueli, A.- A Deductive System for the Temporal
Logic of the Reals , Technical Report, Weizmann Institute of Science,
in preparation.

[LPZ]

[Ml]

[M2]

[MP1]

[MP2]

[MP3]

[dNH]

[NGO]

[OL]

[Pe]

[Pnl]

[Pn2]

[SMS]

127

Lichtenstein, 0 ., Pnueli, A., Zuck, L.- The Glory of the Past, Logics
of Programs, LNCS, 193, Springer Verlag (1985) 196-218.

Milner, R. - Fully Abstract Models of Typed 1-Calculi, Theoretic
Computer Science (1977).

M ilner, R.- A Calculus of Communicating Systems, LNCS92 (1980).

Manna, Z., Pnueli, A. - Verification of Concurrent Programs: The
Temporal Framework, in Correctness Problem in Computer Science,
R .S. Boyer, J.S. Moore (eds.) Academic Press (1982) 215-273.

Manna, Z., Pnueli, A. - How to Cook a Temporal Proof System for
Your Pet Language, lOth POPL (1983) 141-154.

Manna, Z., Pnueli, A. - Verification of Concurrent Programs: A Tem
poral Proof System, Foundations of Computer Science IV, Distributed
Systems, Mathematical Centre Tracts, 159, Amsterdam (1983) 163-
255.

de Nicola, R., Hennesy, M.C .B. -Testing Equivalence for Processes,
lOth ICALP, LNCS 154 (1983).

Nguyen, V., Gries, D., Owicki, S. - A Model and Temporal Proof
System for Networks of Processes, 12th POPL (1985).

Owicki, S., Lamport, L. - Proving Liveness Properties of Concurrent
Programs, ACM TOPLAS 4, 3 (1982) 455-495.

Peterson G.L. -Myths about the Mutual Exclusion Problem, Infor
mation Processing Letters 12,3(1981) 115-116.

Pnueli, A. - The Temporal Semantics of Concurrent Programs, The
oretical Computer Science 13 (1981) 45-60.

Pnueli, A. - In Transition from Global to Modular Temporal Rea
soning About Programs, Proc of NATO School on Logic and Models
for Verification and Specification of Concurrent Systems, La Colle-Sur
Loup (1984).

Schwartz, R .L., Melliar-Smith, P.M. - Temporal Logic Specifications
of Distributed Systems, 2nd International Conference on Distributed
Computing Systems, Paris (1981).

Enforcing Nondeterminism via Linear Time Temporal Logic
Specifications using Hiding

Ruurd Kuiper

DepartmenL of Mathematics and Com puling Science,
Eindhoven Universily of Technology, P.O. Box 513, 5600MB Eindhoven, The

Netherlands.

It is shown how some amount of nondetenninism can be enforced when
using linear time temporal logic. This is achieved through extending the
notion of satisfaction rather than changing the logic, i.e., no recourse is taken
to branching time. The treatment is compared, both in intent and with respect
to realisation, to a similar approach using predicate transformers.

1. Introduction

129

A specification describes requirements which further developments or implementations must
fulfill in order to satisfy it. Usually, many decisions are deliberately left open to be filled in at
later stages. Consequently, specifications usually contain nondeterminism which will, perhaps
only in part, be resolved later.

For example, if production of either of the actions a,b,c or d will satisfy the user, a component
S might, using without further explanation an intuitively obvious notation, be specified by

S sat a v b v c v d.

The customary interpretation of such a specification is to allow S to be implemented by any
process of which the output is in the set (a, b, c, d) . For instance, by a process~. which
always produces a when activated, but also by a v c, which produces either an a or a c upon
different activations.

This kind of nondeterminism, say allowed nondetenninism, is not required of the implemen
tation at all and only leaves some freedom to the implementor due to, deliberate, vagueness in
the specification.

A completely different kind of nondeterminism, say required nondeterminism, is nondeter
minism which the implementation should possess.

The author is currently working in and partially suppon.ed by ESPRIT project P937: "Debugging and Specification of Ada
Real · Time Embedded Systems (DESCARTES)".

130

For example, a random number generator should not always generate the same number when
activated. Yet a specification like

S sat x E IN,

interpreted similarly as above as containing allowed nondeterrninism, does not guarantee this.
Although -arnm.plementation of required nondeterrniniSm like·x:=x'(x' E IN) is intended (cf.
[Bo78]), an implementation which always assigns, say, 5 to x would perfectly satisfy this
specification.

Often, specification methods make use of the first kind of nondeterminism to allow general
specifications, but cannot handle the second kind. Branching time temporal logic (cf.[EH86]),
which describes behaviour as sets of trees, is one of the few exceptions. Linear time temporal
logic, describing behaviour as sets of sequences, does, in its usual form, not have this expres
sive ability. There are, however, many different considerations which at present leave the
debate as to which of the two is the most suitable, wide open.

Another framework in which both kinds of nondeterrninism can be distinguished is that of
partial orders (cf.[Pr86]). However, the level of abstraction obtained there appears to be lower
than in the temporal logic case and more appropriate in a context where refinement is part of
the development process.

We will present and discuss a way to enable in the context of linear time temporal logic,
specification of a modest amount of required nondeterminism. The idea is to limit the extent
to which the allowed nondeterminism may be resolved by additionally specifying a lower
bound. This enforces implementationsto possess a degree of nondeterminism between the
bounds set by the required and the allowed nondeterminism.

For the above examples such lower bounds might be, respectively, a v c and x E (1, ... ,100)

The present paper is an extension of [Ku87] in that a solution is proposed to a problem con
cerning development that was not solved is a satisfactory way in the previous paper. That
problem and its solution, by means of hiding, are described in a now extended section 4.
In section 2 we briefly discuss the (only) approach similar to ours we know of, namely [Fr77].
This is carried out in the context of predicate transformers and safety properties, but it will be
seen that a more general idea underlies this approach. In section 3 we show how this can be
used for linear time temporal logic specifications. The interaction with development is dis
cussed in the next section. In section 5 a brief look is taken at the situation for branching time
temporal logic. The last section contains some discussion.

2. A precursor: required nondeterminism and predicate transformers

In [Fr77], Francez addresses specifying allowed and required nondeterrninism using predicate
transformers. We look at the example given above, S sat a v b v c v d, with the extra aim to
specify some required nondeterrninism.

131

Let the specification of S be given as (cp)S {'!')
In the usual weakest precondition approach, only considering allowed nondeterminism, this
means that S has to satisfy

(i) <!>~ wp(S, '!')where, in this example,

<P =true

'!f=avbve vd.

This only gives an upper bound to the allowed nondeterministic behaviour of S and allows
implementations like, e.g., S = £.

The idea in [Fr77] now is, to enforce 'I' as a lower bound on required nondeterminism as well,
again using weakest preconditions. The extra part of the satisfaction notion then is, that S
should also satisfy

(ii) 'It¢ c# 'If[(¢ ~ '!') ~--. ($ ~ wp(S, '!'*))],
where in this example again

$=true

'!f=avbvevd.

It can be easily seen, that together these requirements limit the implementations to avbvevd
only.

In this example, lower and upper bound coincide. The words lower and upper suggest,
although [Fr77] does not claim this, noncoinciding bounds, allowing a range of implementa
tions in between them. This might, for instance, be denoted by

{<j>)S {'!f,'!f]r, where 'I' is the lower
-

and 'I' the upper bound.

Intuitively, expressed in terms of an obvious semantics of i/o pairs, the lower /upper bound
approach, in our view, aims at achieving the following kind of constraints.

Let <i,a> denote: on any input, produce a. Take as lower and upper bound requirements
respectively

'!f=ave

and

'!f=avbvevd.

Then, denoting the i/o semantics of S by [S], the desired constraint on S would be

{ <i,a>,<i,e>) c [S] <;;;; { <i,a>, <i,b>, <i,e>,<i,d>),

i.e., allowing the implementations ave, avbve, avevd and avbvevd.

Unfortunately, using (ii) with 'I' as 'I' does not give the desired result. Namely (ii) now is of the
form

'lt'!f* c# ave[(¢~ ave)~--, (true~ wp(S, '!'*))].

Consider the implementationS=£. AsS produces only b, S does not satisfy wp(S,ave), which

132

will remain the case if ave is strengthened. So S is, contrary to the intuition, allowed as an
implementation of {<P}S {w}. Hence, the approach in [Fr77] seems limited to coinciding lower
and upper bounds.

In the next section, the lower/upper bound approach will be adapted to linear time temporal
1Qgi5 s_pecjfic_ati.ons_ and ..extended- to-en-able the use of lower a:nd upper bounds that do not
coincide.

3. Enforcing required nondeterminism using linear time temporal logic

In linear time temporal logic (LTL) we take both the specification, w. and the semantics, [S]],
of an implementation S to be an LTL formula. Such a formula in turn can be interpreted as
characterizing a set of (state) sequences, namely those for which it is true.

The customary satisfaction relation when considering only allowed nondeterminism is then
straightforward:

S sat w@ [S] ~ 'V·

Intuitively this means that the set of sequences that can be generated by S is included in the
set allowed by q,. It is clear that any less nondeterministic implementationS', meaning that the
set of sequences it can generate is smaller, which in tum means that [S'] ~ [S], satisfies 'Vas
well. So the implication makes it impossible to specify required nondeterminism. Establish
ing a lower bound is a solution and, in the L TL framework, can be easily incorporated in a
manner reflecting the intuitive set inclusion as mentioned in the previous section.

Namely, by redefining the notion of satisfaction as follows:

S sat <w. ;;;> ~ 'V~ [S] ~ ;;;.

The specification of, for instance, the first example, in the formal notation as used in
[BKP84], i.e. assuming sequences to have labels indicating environment (E) steps and com
ponent (n) steps, then becomes:

S sat <w, w>.
where

'V = E U (n 1\ (ave)) C.fin,

(Which informally states:
starting with environment steps E,
eventually a component step occurs which produces a or c,
after which the component stops.)

and

'V = E U (n 1\ (avbvcvd)) C fin.

(Similar meaning, but describing production of a, b, cor d.)

133

Remarks

(i) An alternative way to enable specifying required nondeterminism may seem to change
the implication to equivalence :

P sat 'V@ [P] =ljl.

This indeed fulfills the aim, but does not possess the lower and upper bound flexibility.
Consequently, extra allowed nondeterminism can now only be obtained by explicitly
listing the allowed alternatives, for example, via exclusive or notation:

S sat 'VI EiJ 'V2 ffi · · · ffi 'Vn@

S sat 'V! ffi S sat 'V2 ffi · · · EiJ S sat 'Vn·

This is undesirable, as usually when giving a specification one only has a rough idea
about what one wants to allow, but certainly not a full grasp of all possible alternatives.
Furthermore, if infinitely many alternatives for implementation exist, as in the case of
the random number generator example, it is not possible to list all of these unless infinite
ffi is allowed.

(ii) In, e .g., [Pn85] a strong notion of expressivity is defined for specification methods: A
method is expressive @ for all S there is a characteristic specification, specc such that:

(i) For all S', S' sat specc ~ ([S]] = [S'])

(ii) For all spec, S sat spec ~ (specc ~spec)
This property usually does not hold; it is obtained for the system described in [BKP84]
when it is extended as above.

4. Development

One part of development is concerned with decomposition into subspecifications. The exten
sion of the notion of specification is such, that adapting of this part of existing methods is
straightforward.

For instance, a compositional specification method dealing with required nondeterminism can
be obtained by using an existing one like described in [BKP84] and just redefining the notion
of specification as above and adapting the proof rules as follows.

For the decomposition part, the essential rules are those concerned with syntactical combina
tors, e.g., sequential and parallel composition, enabling to derive properties of components
from properties of their syntactic subcomponents. These rules reflect the semantics of such
operators and are of the form

S 1 sat 'VI

s2 sat 'V2

C'('V.'Vt·'V2)

C(St.Sz)satljl

where C is a syntactical combinator on the components and C' the corresponding syntactical

condition on the specifications.

The translation then is

S 1 sat <ljl1,1j11>

s2 sat <ljl2.1j12>

C'(ljl,ljf,ljlt.ljlt.lj/2,\jl2)

C(S 1,S 2)sat <ljf,ljl>

134

A concrete example, for sequential composition, uses the temporal logic operator C (chop) .
The idea is, that 4> C ljl is true for a sequence if and only if this sequence can be chopped into
two consecutive sequences for which c)> respectively ljl is true.

S 1 sat <ljl~oljlt>

s2 sat <ljl2,1j12>
- - -

(ljl=> \jl[c lj/2) /\ (ljl[c lj/2 => ljl)

S 1 ;S2 sat <ljf,ljf>

Another part of development is concerned with extending the requirements on the behaviour.
In the context of LTL this intuitively means further narrowing down the sets of sequences
allowed by the spe~ification. In the ljl => [S]] => ;;; framework, this amounts to weakening (!) ljl
and strengthening ljl. This gives rise to the following rule.

-
S sat <c)>,c)>>

ljl=>c)>

4>=> ljl

S sat <ljf,ljf>

Again turning to the previously used example, this means that it can be derived that from

S sat <avcvd, avcvd>

it follows that

S sat <ave, a vbvcvd>

This corresponds to the intuition, as the first specification only allows the implementation
S = avcvd. This is, as has been seen previously, one of the various implementations allowed
by the second specification.

Remark

There is a rather subtle problem in the treatment of required nondeterrninism in development.
Assume specifications to be given in terms of interface variables. Of variables about which at
a certain stage .in the development nothing has yet been decided, usually nothing is required,
i.e., all sequences are allowed as regards their values.

135

However, if nothing is required in 'V about such a variable, this should remain so during
further development, because, as seen from the rules, 'V may only be weakened. Intuitively, as
seen from the example, if straightforward strengthemng of already mentioned variables is
involved, there is no problem, because required nondeterminism for this variable was expli
citly stated.

A possible solution in this case is to argue that a development step causes a lower level of
abstraction to be used. This may be refelected by the addition of new variables to the inter
face.
Requirements, especially required nondeterminism, pertaining to such variables can then also
be seen as limited to this level only.

The problem then disappears, as 'V on a higher level of specification cannot impose require
ments on these variables. This approach may be formalized by introducing an explicit inter
face for each level of specification. (See, e.g., [BK83].)

The above solution can be incorporated more directly in the system via the use of hiding. To
focus thought, reconsider the example used previously.

S Sat(X 1VXzVX 3 ,x 1vx2vs 3vx 4),

denoting the values some variable x might obtain.

What about variables that were not mentioned, say y "#x? Assume a lower bound y 1 vy 2 and an
upper bound y 1 vy 2vy 3 is required for y "#x.

(x 1vx2) · · ·? · · · ~ [S] ~ (x 1vx 2vx 3)A(y 1vy 2vy 3)

should be the form of the requirement.
However, as ljf=x 1 vx2 did not mention y, all values of y were implicitly required as possible.

We now introduce hiding.
Let 4>(x,y) restrict x andy.
Then if>(x,y)ty<W"3y • 4>(x,y), 4> withy hidden, restricts only x.

Using hiding, satisfaction can be redefined so as to represent the intuitively desirable feature
that variables which have not been mentioned are unrestricted. Let var(4>) be the set of free
variables in if>.

S sat• <ljf,;j;>~ (IV~ [S]j/var([S] \ var(\V)))

1\

This produces the desired result for the example:

In a further development step, nondeterminism for y can be enforced through

136

The new definitiol} _Qf_satisfaction requires a change to be made to the development rule con-
cerning extending requirements. ·--·-· ·

As can be observed from the last example, the clause \j/=:> 4J in the old rule is not satisfied:

x 1 vx2*\x 1 vx2)"(y' vy2)

It should be clear from the discussion so far that the required change is:

S sat• <ljl,~>
\jl=:> ljl/var(ljl)\ var('V)

4l =:> 'V

S sat •, <\jf, \V>
If in the above example the development is further restricting the required nondeterminism of
x to x 1 v x 2 v x 3 and the allowed nondeterminism of x to x 1 v x 2 v x 3 then this development
can be proved to be correct using the rule, as:

(i) x 1 vx2 =:>((x, vx2 vx3)" (y 1 vy2))/y

because
x 1 vx2 =:>x 1 vx2 vx3

and

(ii) (XI VX2 VX3) A (yl VY2 vy3)::>Xt VX2 VX3 VX4

Correct implementations similarly can be seen to be
(x 1 v x 2 v x 3) A (y 1 v y 2) and (x 1 v x 2 v x 3)" (y 1 v y 2 v y 3).

Expressiveness is maintained.
S is specified up to observational equivalence by

S sat <[S]/inv([S]), [S]/inv([S])>

where inv([S]) denote the set of invisible variables of S.

Let 0 [S] be the restriction of the description of [S] to visible variables, then clearly

O[S'] =O[S] iff

[S]/inv([S]]) => [S']/var([S']) \ var([S] Iinv([S]))

[S'] => [S] \ inv([S]).

137

5. Branching time temporal logic

In branching time temporal logic (BTL), formulae are interpreted not as characterizing sets of
sequences, but sets of trees.
It is possible to state that a branch possessing certain properties is present in such trees.
Hence, required nondeterminism can be expressed directly.

One consideration when choosing between LTL and BTL is, that in the LTL application we
proposed, behaviour of a process is still viewed as a set of state sequences. Generally, BTL
allows to express branching at every arbitrary state in the tree. This could be regarded as pro
viding too much structure. Of course, one may put some restriction on the use of BTL formu
lae (more specifically, on the use of existential quantification over branches) to yield trees
that only branch at the root. This could be seen as the transition point from linear to branching
time views. Also see in this respect [GS86].
Another consideration might be, that decision procedures for branching time logics are in
general more complex than those for comparable linear time ones.

As yet, there seems to be no concensus about which of the views is the most suitable (or
when).

For more information on BTL see, e.g., [EL85, EH86].

6. Discussion

We presented a way to enforce some amount of required nondeterminism via LTL
specifications. It is sometimes argued that specifying required nondeterminism is meaning
less, as no test will be able to falsify a claim like, e.g., ljl =a v b. The idea is, that even after
repeated testing with consistently result a, b might still occur at some future test.
One remark here is, that exactly the same argumentation applies to fairness requirements like:
eventually b will occur. This concept however now seems quite well accepted.

More direct counter arguments are the following:

(i) When designing a system, it is natural that initially some properties are underdefined.
During development these may be strengthened to falsifiable ones, which is certainly the
only way in which they can be implemented.

(ii) An implementation will come together with a proof that its specification is met, so test-
ing is not required.

A fortunate consequence of the fact that the extension made to the notion of specification
retains the interpretation as a pure L TL formula and does not alter the logic is, that existing
decision procedures (see, e .g., [Go83]) can still be used. There seems to be a problem with
the use of hiding to enable development in that it interferes with compositionality. We indi
cate where (though not how!) the rule for sequential composition should be adapted. We use
the rule in a strong form, writing ;j;1 C ;j;2 for ;j;) and unsuccessfully attempting the same for ljl.

S 1 sat• <'Vl· ;, >,i.e .[lvl TI => [S 1] /var([S 1]) \ var([S 2])

1\ [SIll => ;I
S2 sat• <'V2.o/2>.i.e.['Vz]l => [Sz]]/var([Sz]]) \ var([Sz])

. I\ [Sz] => o/2 _
S 1 ;S 2 sat • <?,'VI C 'V2>

138

An open problem is, whether existing devices that contain nondeterminism like the one given
above, like random number generators, will in general satisfy intuitively correct abstract
specifications of this property. Furthermore, if this is the case, how can this be proven? The
link between the formulation of the practical and the theoretical properties seems not obvious.

Acknowledgements

Many thanks go to Ron Koymans and Rob Gerth for comments and help at various stages and
especially to Willem-Paul de Roever, who provided the link to reference [Fr77].
I am very grateful to Ed me van Thiel for Elastic Time Typing.

References

[BK83)

[BKP84]

[Bo78]

[EL85)

[EH86]

[Fr77)

[GS86)

Barringer, H., Kuiper, R., Towards the Hierarchical , Temporal Logic,
Specification of Concurrent Systems, LNCS 207 .

Barringer, H., Kuiper, R., Pnueli, A., Now You May Compose Temporal Logic
Specifications, ACM-STOC 1984.

Boom, H.J. :A weaker precondition for loops, Math. Centrum Report, Amster
dam, 1978.

Emerson, E.A., Chin-Laung Lei, Modalities for Model Checking : Branching
Time Logic Strikes Back, POPL 1985.

Emerson, E.A., Halpern, Y.N., "Sometimes" and "Not Never" Revisited: On
Branching versus Linear Time Temporal Logic, JACM, Vol. 33, No. 1, 1986.

· Francez, N., A Case for a Forward Predicate Transformer , Inf. Proc. Letters
IEEE 6:6, 1977.

Graf, S., Sifakis, J., A Logic for the Description of Non-deterministic Pro
grams and their Properties, Inf. and Control , Vol. 68, Nos. 1-3, pp. 254-270
(1986).

[Go83]

[Ku87]

[Pn85]

[Pr86]

139

Gough, G.D., M.Sc. Thesis, Decision Procedures for Temporal Logic, Univ. of
Manchester, 1983.

Kuiper, R., Enforcing Nondeterminism via Linear Time Temporal Logic
Specifications, Proc. of the SION Conference on Computing Science in the
Netherlands, 1987.

Pnueli, A., Linear and Branching Structures in the Semantics and Logics of
Reactive Systems, LNCS 194.

Pratt, V., Modelling Concurrency with Partial Orders, International Journal of
Parallel Programming 15, 1986.

141

SAMENVATTING

Nog steeds vormt het vervaardigen van programma's die aan de verwachtingen van
hun gebruikers voldoen een probleem. Dit is in het bijzonder het geval bij concu r rente
programma's waarbij diverse berekeningen tegelijk worden uitgevoerd. Toch zijn zulke
programma's gewenst, bijvoorbeeld uit effi.cientie oogpunt of vanwege de inherent con
currente aard van sommige talen .

Het probleem kan gesplitst worden in twee deelproblemen .

1. Het beschrijven van de eisen waaraan een programma moet voldoen: specificatie.

2. Het komen tot een programma dat aan deze eisen voldoet: ontwikkeling.

Een onderdeel van de oplossing van het eerste deelprobleem is het kiezen van een ge
schikt niveau van detail voor de beschrijving. Uiteraard zal een specificatie minder
precies zijn dan het uiteindelijke programma, dit betreft derhalve abstractie.

Volgens een dikwijls toegepaste methode geven wij de waarden van in een berekening
voorkomende variabelen weer via het begrip toestand: een functie die aan variabelen
waarden toekent. Op verschillende momenten geven bijbehorende toestanden dan de
waarden van de variabelen weer .

Een geschikt abstractie niveau voor het beschrijven van een grate klasse concurrente
berekeningen is dat, waarop de onderlinge volgorde van individuele toestand en kan wor
den beschreven . De abstractie is, dat geen preciese tijdstippen aan toestanden worden
verbonden.

Een in het afgelopen decennium bestudeerd formalisme voor het uitdrukken van der
gelijke specificaties is temporele logica. Speciale symbolen voor het weergeven van de
orderelatie tussen toestanden maken het mogelijk het expliciet noemen van tijdsmo
menten te verm ijden.

Voor de in dit proefschrift beschouwde vragen blijkt de eenvoudige variant lineaire
tijd temporele logica toereikend. Hierin wordt tijd beschouwd als een lineair geordende
stroom momenten in plaats van, bijvoorbeeld, een boomstructuur van alternatieven of
een slechts partieel geordende verzameling gebeurtenissen.

Een onderdeel van de oplossing voor het tweede deelprobleem is het verder ontwikkelen
van een specificatie voor een programma (ook wei component genoemd) door middel
van opsplitsing in deelspecificaties van de deelcomponenten van dat programma. Di t
noemt men ontwikkeling via decompositie .

Component gedrag, de betekenis van component specificaties en het samenvoegen van
deelcomponenten worden aile gemodelleerd via temporele logica. Een bewijssysteem
maakt het dan mogelijk te bewijzen of deelcomponenten die aan zekere deelspecifica
ties voldoen na samenvoeging de specificatie vervullen van een eerder gespecificeerde
component . Dit noemt men verificatie.

142

Een bewijssysteem moet voldoen aan de volgende voorwaarden.

(i) Geldigheid: aileen wat waar is in het temporele logica model kan bewezen worden .

(ii) Volledigheid: alles wat waar is in he~ model kan ook_bewezen worden.

In dit proefschrift worden modelleringen en bewijssystemen voor verschillende oplos
singen voor de eerder genoemde twee deelproblemen gegeven.

Het proefschrift bestaat uit vijf hoofdstukken.

Het eerste hoofdstuk (dat overigens het laatst geschreven is) is een poging wat orde te
scheppen in de vele, vaak slechts gebrekkig geformuleerde, begrippen op het gebied van
specificatie.

In het bijzonder compositionaliteit en modulariteit worden nader beschouwd, en wei
wat betreft hun betekenis in modellen. Het eerste begrip zegt iets over de mogelijkhe
den voor gegeven deelcomponenten deelspecificaties te vinden die te combineren zijn,
het tweede iets over de mogelijkheden gegeven deelspecificaties te combineren zonder
over de deelcomponenten te beschikken.

In de volgende twee hoofdstukken wordt aandacht besteed aan een aanpak van het
tweede probleem: compositionele ontwikkeling.

Het blijkt van belang in de specificatie van een component informatie op te nemen over
de omgeving (andere componenten!) waarin deze functioneert. Deze aanpak bouwt
voort op ideeen van Lamport.

Een natuurlijk niveau van abstractie wordt bereikt door voor elke component de omge
ving ervan te beschrijven als een geheel, dus zonder de deelcomponenten waaruit deze
bestaat apart te onderscheiden . Dit bouwt voort op een idee van Jones, de "compo
nent/environment aanpak", en een door Aczel hiervoor ontwikkeld model.

In het tweede hoofdstuk wordt een taal beschouwd waarin communicatie tussen deel
componenten plaatsvindt door middel van gemeenschappelijke variabelen. Dit wil zeg
gen dat verschillende componenten dezelfde variabelen kunnen veranderen of lezen.

De belangrijkste bijdrage in dit hoofdstuk is de formalisering van de component/environment
aanpak binnen lineaire tijd temporele logica.

In het derde hoofdstuk wordt een soortgelijke aanpak gei"ntroduceerd voor een op Ho
are's taal, Communicating Sequential Processes, gebaseerde taal. De interactie tussen
deelcomponenten is hier gecompliceerder, namelijk via synchrone communicatie waarbij
deelcomponenten op elkaar moeten wachten en bovendien uit verscheidene communi
catie mogelijkheden kunnen kiezen .

Een bekende modellering is, in essentie, dat aan de toestanden een keuzeverzameling

143

van mogelijke communicaties wordt toegevoegd. Dit volgt ideeen van Hennessy /De
Nicola en Brookes/Hoare/Rascoe.

Gedemonstreerd wordt hoe een dergelijke aanpak kan worden ingepast in het model,
dat in het vorige hoofdstuk is gepresenteerd.

Het vierde hoofdstuk betreft het eerste deelprobleem: abstractie.

Toepassingen van temporele logica in de informatica gaan meestal uit van een dis
creet tijdsdomein, waarbij tijdsmomenten bijvoorbeeld worden weergegeven door de
natuurlijke get allen.

Hierdoor blijken sommige intui"tief gelijke programma's ongewild verschillende bete
kenis te krijgen. In essentie is het probleem als volgt .

Een programma dat een willekeurige tijd, maar ongelijk nul, actief is, wordt in dis
crete tijd gemodelleerd als

"een of meer tijdsmomenten actief".

De sequentiele compositie van twee van zulke programma's zou intui:tief dezelfde be
tekenis moeten krijgen, maar leidt, op voor de hand liggende wijze, tot modellering
als

"twee of meer tijdsmomenten actief".

De in dit hoofdstuk gepresenteerde oplossing is het gebruik van een dicht tijdsdomein,
bijvoorbeeld de reiHe getallen.

De betekenis van het hoven gegeven programma alswel van de sequentiele composi
tie van twee ervan wordt nu

"gedurende een willekeurig eindig lang niet-leeg interval actief".

De prijs die hiervoor wordt betaald is overigens, dat een extra conditie moet worden
opgenomen die uitsluit dat oneindig vee! gebeurtenissen plaatsvinden in eindig vee!
tijd. Voor zover nu bekend is een dergelijke conditie onvermijdelijk bij het gebruik van
dichte tijdsdomeinen .

Tenslotte wordt in het laatste hoofdstuk niet-determinisme nader beschouwd.

In het algemeen worden in specificaties diverse mogelijkheden toegelaten als compo
nent gedrag-de specificaties abstraheren immers . Een specificatie kan dus worden
beschouwd als bovengrens aan de mogelijkheden van component gedrag.

Voor sommige toepassingen is ook een ondergrens gewenst. Bijvoorbeeld bij een pro
gramma dat willekeurige getallen moet genereren zou zeker moeten worden geeist dat

144

het zich niet beperkt tot slechts een rnogelijkheid.

In dit laatste hoofdstuk Iaten wij zien hoe een idee van Francez voor het toevoegen
van een ondergrens aan specificaties, ontwikkeld v66r ternporele beschrijvingen bekend
werden, in de context van linea.ire tijd ternporele logica specificaties kan worden ge
br_uik_t .

Deze rnodificatie toont tevens de grenzen aan van lineaire tijd ternporele logica voor de
directe uitdrukking van keuzes (i.t.t. de toevoeging van keuzeverzarnelingen als in het
derde hoofdstuk).

Voor rneer uitdrukkingskracht in dit opzicht is men aangewezen op, bijvoorbeeld, ver
takkende tijd temporele logica. Hierbij wordt tijd niet meer als linea.ire stroom mo
rnenten maar als een zich vertakkende stroom beschouwd.

145

CURRICULUM VITAE

Op 26 juni 1953 werd ik te Amsterdam geboren.

Na het eindexamen Gymnasium (3 aan het Hervormd Lyceum West te Amsterdam
begon ik in 1971 de studie aan het Wiskundig Seminarium van de Vrije Universiteit te
Amsterdam .

Na het kandidaatsexamen Wiskunde met bijvakken Natuur- en Sterrenkunde in 1974
(cum laude) trok vooral topologie mijn aandacht.

Het doctoraal examen in 1979 met uitgebreid hoofdvak wiskunde en bijvak psychologie
(cum laude) omvatte dan ook een afstudeerscriptie in deze richting, over de Absoluut,
bij Prof. P.C. Baayen. Hij suggereerde mij Informatica als onderzoeksterrein.

Vervolgens trad ik als assistent (aanvankelijk voor halve werktijd) in dienst bij de
Afdeling Informatica van het Mathematisch Centrum, bij Prof. J .W. de Bakker. Hij
wekte mijn belangstelling voor de semantiek van programmeertalen, in het bijzonder
wat betreft niet-determinisme. Dit leidde tot een publicatie in die richting [R. Kuiper,
An Operational Semantics for Bounded Nondeterminism Equivalent to a Denotational
One, Algorithmic Languages (J.W. de Bakker, J.C. van Vliet eds.), North-Holland, pp.
373-398, 1981].

Tijdens deze periode kwan ik, op zoek naar een promotieonderwerp, in contact met
Willem-Paul de Roever, die onderzoek naar de toepassing van temporele logica in de
informatica suggereerde als mogelijkheid. De hieruit volgende samenwerking leidde in
1982 tot een artikel over fairness principes voor Hoare's taal Communicating Sequential
Processes (R. Kuiper, W .P. de Roever, Fairness Assumptions for CSP in a Temporal
Logic Framework, Formal Description of Programming Concepts-II (D. Bj0rner ed.),
North-HolJand, pp. 159-170, 1983].

De conferentielezing hierover leidde ertoe dat Howard Barringer mij uitnodigde als
research associate te komen werken aan de U niversiteit van Manchester- eerst bij de
groep van Prof. C.B. Jones, later bij een project van hemzelf.

Samenwerking met Barringer leidde in 1983 tot een publicatie en tot een lezing op
het STL/SERC symposium te Cambridge [H. Barringer, R. Kuiper, Towards the Hier
archical Temporal Logic Specification of Concurrent Systems, LNCS 207, pp. 157-184,
1984] waaruit het contact met Prof. A. Pnueli voortkwam .

Uit de hierop volgende samenwerking ontstonden de artikelen waarop dit proefschrift
voornarnelijk is gebaseerd.

Sinds 1986 ben ik als universitair docent in dienst bij de Technische Universiteit Eind
hoven, bij de Sectie Theoretische Informatica, geleid door Willem-Paul de Roever. !Iier
kwarn het laatste gedeelte van dit proefschrift tot stand en werd tevens een beter inzicht
gekregen in de onderliggende problematiek van de erin behandelde onderwerpen.

Current address:

Department of Computing Science,
Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven,
The Netherlands
Email :- mcvax!eutrc3~wsinruur .uutp.

146

147 .

Promotiereglement artikel 15.3b

The EUT "prornotieregelernent" requires that if a. thesis contains co-authored papers
it should be indicated which parts are based on active contributions of the author of
the thesis.

In the case of chapter 1, co-authored by Koymans and Zijlstra, the material presented
there forms part of a more extensive attempt by the three authors to investigate which
requirements a real time specification method should satisfy; this research is carried
out in the context of the ESPRIT project DESCARTES. As regards the part presented
in this thesis, the author of the thesis has been actively involved in all parts of the
research and has contributed at least three quarters of the material. The investigations
were initiated during his stay at the University of Manchester and cairied through and
completed at the EUT.

In the case of chapters 2, 3 and 4, with co-authors Barringer and Pnueli, after an initial
phase during which Barringer and Kuiper developed a precursor, [BK83), of chapter
2, all three authors have been actively and essentially involved at all stages and in all
parts of the research reported on in chapter 2, 3 and 4. It is not feasible to provide any
further quantitative or qualitative division of the effort; both Barringer and Pnueli are
directly involved in the evaluation of this thesis as, repectively, one of the promotores
and member of the "kleine commissie".

Copyright

The copyright of the papers reproduced in this thesis (with kind permission of the
copyright holders) remains with the journals or proceedings in which they were pub
lished originally - as claimed in these journals or proceedings, listed in the table of
contents of thls thesis.

STELLING EN

bij het proefschrift Combining Linear Time Temporal Logic Descriptions of
Concurrent Computations, door Ruurd Kuiper

1. Expliciete identificatie van de actieve component voor elke transitie in een concur
rente berekening is niet noodzakelijk voor het verkrijgen van een compositioneel
temporele logica formalisme.

2. Indien in de componentspecificaties voor elke transitie in een concurrente .bereke
ning expliciet wordt aangegeven of dit een component- of omgevingstransitie betreft,
kunnen de compositieoperatoren in een compositioneel temporele logica formalisme
eenvoudiger zijn dan wanneer expliciete identificatie niet plaatsvind t.
(Hoofdstuk 2 van dit proefschrift.]

3. De opmerking van Lamport en Zwiers dat in bet artikel dat het tweede hoofdstuk
van dit proefschrift vormt voor elke operator uit de programmeertaal een nieuwe
temporele operator wordt gei"ntroduceerd is misleidend in de zin dat deze nieuwe
operatoren slechts worden gegeven als alternatief voor in de standaard logica plus
dekpunten gedefinieerde operatoren.
(Hoofdstuk 2 van dit proefschrift,
Lamport, 1., An Axiomatic Semantics of Concurrent Programming Languages,
NATO ASI Series, Vol. F13, Logics and Models of Concurrent Systems, (K .R.
Apt ed.), Springer, pp. 77-122, 1985,
Zwiers, J ., Compositionality, Concurrency and Partial Correctness: Proof theories
for networks of processes, and their connection, Ph.D. Thesis, Eindhoven University
of Technology, 1988; also as LNCS 321, 1989].

4. Compositionaliteit en modulariteit voor de semantiek van specificatieformalismen
geven het verband aan tussen compositionaliteit voor de semantiek van program
meertalen enerzijds en compositionaliteit en modulariteit van bewijssystemen voor
specificatieformalismen anderzijds.
(Hoofdstuk 1 van dit proefschrift.J

5. Het criterium van Stirling voor de vergelijking van invarianten is onjuist als dit
wordt toegepast onder de gelntroduceerde conventie dat -, 0 = ff. Het is juist als
-, 0 = tt wordt gebruikt.
(Stirling, C., A generalization of Owicki-Gries's Hoare logic for a concurrent while
language, Theoretical Computer Science 58, p. 351, 1988.]

6. Het gebruik van verzamelingen bomen als semantiek voor concurrente processen met
externe en interne keuzes maakt het mogelijk zowel concurrente executie als deze
beide soorten keuzes via modelstructuur afzonderlijk weer te geven. Op natuurlijke
wijze correspondeert concurrente executie met "interleaving", externe keuze met
vertakking en interne keuze met verschillende bomen.

7. Bij gebruik van verzamelingen pa.rtieel geordende verzamelingen als semanli'"k voor
concurrente processen wordt partiele ordening aangewend om concurrente cx.ecutie
te modelleren. Interne keuze correspondeert op natuurlijke wijze met verscl,illende
partieel geordende verzamelingen. Er is dan geen modelstructuur meer over om ex
terne keuze te modelleren. Kennelijk moet men hiervoor weer zijn toevlucht nemen
tot modellering door middel van "failure sets" of "ready sets".
[Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall, 1985,
Hennessy, M.S., Algebraic Theory of Processes, MIT Press, 1988.]

8. Ret verdient aanbeveling het gebruik van de termen "liveness" en "fairness'" 0eschei
den te houden en te beperken tot, respectievelijk, de categorie van progres'i'' l'igen
schappen en die van keuze eigenschappen.

9. Een voldoende expressief domein voor de semantiek van natuurlijke talen is tid.t der
functies van hersentoestanden naar hersentoestanden.
Kunstmatige intelligentie onderzoek toont aan dat het abstra.heren hierva.n vee!
moeilijker is dan het abstraheren van machinetoestanden in het geval van program
meertalen.

10. De "Kunst der Fuge" van J .S. Bach is een vroeg voorbeeld van machine-ona:11I<t.nkelijke
specificatie van concurrente processen.

