4 research outputs found

    Learning-based Predictive Control for Nonlinear Systems with Unknown Dynamics Subject to Safety Constraints

    Full text link
    Model predictive control (MPC) has been widely employed as an effective method for model-based constrained control. For systems with unknown dynamics, reinforcement learning (RL) and adaptive dynamic programming (ADP) have received notable attention to solve the adaptive optimal control problems. Recently, works on the use of RL in the framework of MPC have emerged, which can enhance the ability of MPC for data-driven control. However, the safety under state constraints and the closed-loop robustness are difficult to be verified due to approximation errors of RL with function approximation structures. Aiming at the above problem, we propose a data-driven robust MPC solution based on incremental RL, called data-driven robust learning-based predictive control (dr-LPC), for perturbed unknown nonlinear systems subject to safety constraints. A data-driven robust MPC (dr-MPC) is firstly formulated with a learned predictor. The incremental Dual Heuristic Programming (DHP) algorithm using an actor-critic architecture is then utilized to solve the online optimization problem of dr-MPC. In each prediction horizon, the actor and critic learn time-varying laws for approximating the optimal control policy and costate respectively, which is different from classical MPCs. The state and control constraints are enforced in the learning process via building a Hamilton-Jacobi-Bellman (HJB) equation and a regularized actor-critic learning structure using logarithmic barrier functions. The closed-loop robustness and safety of the dr-LPC are proven under function approximation errors. Simulation results on two control examples have been reported, which show that the dr-LPC can outperform the DHP and dr-MPC in terms of state regulation, and its average computational time is much smaller than that with the dr-MPC in both examples.Comment: The paper has been submitted at a IEEE Journal for possible publicatio

    On feasible sets for MPC and their approximations

    No full text
    International audienceIn this paper we are interested in the computation of feasible sets for linear model predictive control techniques, based on set relations and not on the conventional orthogonal projection. Further, the problem of computing suitable inner approximations of the feasible sets is considered. Such approximations are characterized by simpler polytopic representations, and preserve essential properties as convexity, positive invariance, inclusion of the set of expected initial states
    corecore