55,809 research outputs found

    Multicast in DKS(N, k, f) Overlay Networks

    Get PDF
    Recent developments in the area of peer-to-peer computing show that structured overlay networks implementing distributed hash tables scale well and can serve as infrastructures for Internet scale applications. We are developing a family of infrastructures, DKS(N; k; f), for the construction of peer-to-peer applications. An instance of DKS(N; k; f) is an overlay network that implements a distributed hash table and which has a number of desirable properties: low cost of communication, scalability, logarithmic lookup length, fault-tolerance and strong guarantees of locating any data item that was inserted in the system. In this paper, we show how multicast is achieved in DKS(N, k, f) overlay networks. The design presented here is attractive in three main respects. First, members of a multicast group self-organize in an instance of DKS(N, k, f) in a way that allows co-existence of groups of different sizes, degree of fault-tolerance, and maintenance cost, thereby, providing flexibility. Second, each member of a group can multicast, rather than having single source multicast. Third, within a group, dissemination of a multicast message is optimal under normal system operation in the sense that there are no redundant messages despite the presence of outdated routing information

    Fault-tolerant meshes with minimal numbers of spares

    Get PDF
    This paper presents several techniques for adding fault-tolerance to distributed memory parallel computers. More formally, given a target graph with n nodes, we create a fault-tolerant graph with n + k nodes such that given any set of k or fewer faulty nodes, the remaining graph is guaranteed to contain the target graph as a fault-free subgraph. As a result, any algorithm designed for the target graph will run with no slowdown in the presence of k or fewer node faults, regardless of their distribution. We present fault-tolerant graphs for target graphs which are 2-dimensional meshes, tori, eight-connected meshes and hexagonal meshes. In all cases our fault-tolerant graphs have smaller degree than any previously known graphs with the same properties

    Fault-Tolerant Spanners: Better and Simpler

    Full text link
    A natural requirement of many distributed structures is fault-tolerance: after some failures, whatever remains from the structure should still be effective for whatever remains from the network. In this paper we examine spanners of general graphs that are tolerant to vertex failures, and significantly improve their dependence on the number of faults rr, for all stretch bounds. For stretch k3k \geq 3 we design a simple transformation that converts every kk-spanner construction with at most f(n)f(n) edges into an rr-fault-tolerant kk-spanner construction with at most O(r3logn)f(2n/r)O(r^3 \log n) \cdot f(2n/r) edges. Applying this to standard greedy spanner constructions gives rr-fault tolerant kk-spanners with O~(r2n1+2k+1)\tilde O(r^{2} n^{1+\frac{2}{k+1}}) edges. The previous construction by Chechik, Langberg, Peleg, and Roddity [STOC 2009] depends similarly on nn but exponentially on rr (approximately like krk^r). For the case k=2k=2 and unit-length edges, an O(rlogn)O(r \log n)-approximation algorithm is known from recent work of Dinitz and Krauthgamer [arXiv 2010], where several spanner results are obtained using a common approach of rounding a natural flow-based linear programming relaxation. Here we use a different (stronger) LP relaxation and improve the approximation ratio to O(logn)O(\log n), which is, notably, independent of the number of faults rr. We further strengthen this bound in terms of the maximum degree by using the \Lovasz Local Lemma. Finally, we show that most of our constructions are inherently local by designing equivalent distributed algorithms in the LOCAL model of distributed computation.Comment: 17 page

    Fault-tolerant additive weighted geometric spanners

    Full text link
    Let S be a set of n points and let w be a function that assigns non-negative weights to points in S. The additive weighted distance d_w(p, q) between two points p,q belonging to S is defined as w(p) + d(p, q) + w(q) if p \ne q and it is zero if p = q. Here, d(p, q) denotes the (geodesic) Euclidean distance between p and q. A graph G(S, E) is called a t-spanner for the additive weighted set S of points if for any two points p and q in S the distance between p and q in graph G is at most t.d_w(p, q) for a real number t > 1. Here, d_w(p,q) is the additive weighted distance between p and q. For some integer k \geq 1, a t-spanner G for the set S is a (k, t)-vertex fault-tolerant additive weighted spanner, denoted with (k, t)-VFTAWS, if for any set S' \subset S with cardinality at most k, the graph G \ S' is a t-spanner for the points in S \ S'. For any given real number \epsilon > 0, we obtain the following results: - When the points in S belong to Euclidean space R^d, an algorithm to compute a (k,(2 + \epsilon))-VFTAWS with O(kn) edges for the metric space (S, d_w). Here, for any two points p, q \in S, d(p, q) is the Euclidean distance between p and q in R^d. - When the points in S belong to a simple polygon P, for the metric space (S, d_w), one algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges and another algorithm to compute a geodesic (k, (\sqrt{10} + \epsilon))-VFTAWS with O(kn(\lg{n})^2) edges. Here, for any two points p, q \in S, d(p, q) is the geodesic Euclidean distance along the shortest path between p and q in P. - When the points in SS lie on a terrain T, an algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges.Comment: a few update
    corecore