41,873 research outputs found

    On a shape adaptive image ray transform

    No full text
    A conventional approach to image analysis is to perform separately feature extraction at a low level (such as edge detection) and follow this with high level feature extraction to determine structure (e.g. by collecting edge points using the Hough transform. The original image Ray Transform (IRT) demonstrated capability to extract structures at a low level. Here we extend the IRT to add shape specificity that makes it select specific shapes rather than just edges, the new capability is achieved by addition of a single parameter that controls which shape is elected by the extended IRT. The extended approach can then perform low-and high-level feature extraction simultaneously. We show how the IRT process can be extended to focus on chosen shapes such as lines and circles. We confirm the new capability by application of conventional methods for exact shape location. We analyze performance with images from the Caltech-256 dataset and show that the new approach can indeed select chosen shapes. Further research could capitalize on the new extraction ability to extend descriptive capability

    Dr TIM: Ray-tracer TIM, with additional specialist scientific capabilities

    Full text link
    We describe several extensions to TIM, a raytracing program for ray-optics research. These include relativistic raytracing; simulation of the external appearance of Eaton lenses, Luneburg lenses and generalized focusing gradient-index (GGRIN) lenses, which are types of perfect imaging devices; raytracing through interfaces between spaces with different optical metrics; and refraction with generalised confocal lenslet arrays, which are particularly versatile METATOYs.Comment: 12 pages, 16 figure

    Detection and Interpretation Of Long-Lived X-Ray Quasi-Periodic Pulsations in the X-Class Solar Flare On 2013 May 14

    Full text link
    Quasi-periodic pulsations (QPP) seen in the time derivative of the GOES soft X-ray light curves are analyzed for the near-limb X3.2 event on 14 May 2013. The pulsations are apparent for a total of at least two hours from the impulsive phase to well into the decay phase, with a total of 163 distinct pulses evident to the naked eye. A wavelet analysis shows that the characteristic time scale of these pulsations increases systematically from ∌\sim25 s at 01:10 UT, the time of the GOES peak, to ∌\sim100 s at 02:00 UT. A second ridge in the wavelet power spectrum, most likely associated with flaring emission from a different active region, shows an increase from ∌\sim40 s at 01:40 UT to ∌\sim100 s at 03:10 UT. We assume that the QPP that produced the first ridge result from vertical kink-mode oscillations of the newly formed loops following magnetic reconnection in the coronal current sheet. This allows us to estimate the magnetic field strength as a function of altitude given the density, loop length, and QPP time scale as functions of time determined from the GOES light curves and RHESSI images. The calculated magnetic field strength of the newly formed loops ranges from about ∌\sim500 G at an altitude of 24 Mm to a low value of ∌\sim10 G at 60 Mm, in general agreement with the expected values at these altitudes. Fast sausage mode oscillations are also discussed and cannot be ruled out as an alternate mechanism for producing the QPP

    The Pinhole/Occulter Facility

    Get PDF
    Scientific objectives and requirements are discussed for solar X-ray observations, coronagraph observations, studies of coronal particle acceleration, and cosmic X-ray observations. Improved sensitivity and resolution can be provided for these studies using the pinhole/occulter facility which consists of a self-deployed boom of 50 m length separating an occulter plane from a detector plane. The X-ray detectors and coronagraphic optics mounted on the detector plane are analogous to the focal plane instrumentation of an ordinary telescope except that they use the occulter only for providing a shadow pattern. The occulter plane is passive and has no electrical interface with the rest of the facility

    PhoSim-NIRCam: Photon-by-photon image simulations of the James Webb Space Telescope's Near-Infrared Camera

    Full text link
    Recent instrumentation projects have allocated resources to develop codes for simulating astronomical images. Novel physics-based models are essential for understanding telescope, instrument, and environmental systematics in observations. A deep understanding of these systematics is especially important in the context of weak gravitational lensing, galaxy morphology, and other sensitive measurements. In this work, we present an adaptation of a physics-based ab initio image simulator: The Photon Simulator (PhoSim). We modify PhoSim for use with the Near-Infrared Camera (NIRCam) -- the primary imaging instrument aboard the James Webb Space Telescope (JWST). This photon Monte Carlo code replicates the observational catalog, telescope and camera optics, detector physics, and readout modes/electronics. Importantly, PhoSim-NIRCam simulates both geometric aberration and diffraction across the field of view. Full field- and wavelength-dependent point spread functions are presented. Simulated images of an extragalactic field are presented. Extensive validation is planned during in-orbit commissioning

    Disentangling instrumental broadening

    Full text link
    A new procedure aiming at disentangling the instrumental profile broadening and the relevant X-ray powder diffraction (XRPD) profile shape is presented. The technique consists of three steps: denoising by means of wavelet transforms, background suppression by morphological functions and deblurring by a Lucy--Richardson damped deconvolution algorithm. Real XRPD intensity profiles of ceria samples are used to test the performances. Results show the robustness of the method and its capability of efficiently disentangling the instrumental broadening affecting the measurement of the intrinsic physical line profile. These features make the whole procedure an interesting and user-friendly tool for the pre-processing of XRPD data.Comment: 9 pages, 1 table, 1 figure; typos correcte

    Mask-based dual-axes tomoholography using soft x-rays

    Get PDF
    We explore tomographic mask-based Fourier transform x-ray holography with respect to the use of a thin slit as a reference wave source. This imaging technique exclusively uses the interference between the waves scattered by the object and the slit simplifying the experimental realization and ensuring high data quality. Furthermore, we introduce a second reference slit to rotate the sample around a second axis and to record a dual-axes tomogram. Compared to a single-axis tomogram, the reconstruction artifacts are decreased in accordance with the reduced missing data wedge. Two demonstration experiments are performed where test structures are imaged with a lateral resolution below 100 nm
    • 

    corecore