684 research outputs found

    A low-cost time-hopping impulse radio system for high data rate transmission

    Full text link
    We present an efficient, low-cost implementation of time-hopping impulse radio that fulfills the spectral mask mandated by the FCC and is suitable for high-data-rate, short-range communications. Key features are: (i) all-baseband implementation that obviates the need for passband components, (ii) symbol-rate (not chip rate) sampling, A/D conversion, and digital signal processing, (iii) fast acquisition due to novel search algorithms, (iv) spectral shaping that can be adapted to accommodate different spectrum regulations and interference environments. Computer simulations show that this system can provide 110Mbit/s at 7-10m distance, as well as higher data rates at shorter distances under FCC emissions limits. Due to the spreading concept of time-hopping impulse radio, the system can sustain multiple simultaneous users, and can suppress narrowband interference effectively.Comment: To appear in EURASIP Journal on Applied Signal Processing (Special Issue on UWB - State of the Art

    The Trade-off between Processing Gains of an Impulse Radio UWB System in the Presence of Timing Jitter

    Get PDF
    In time hopping impulse radio, NfN_f pulses of duration TcT_c are transmitted for each information symbol. This gives rise to two types of processing gain: (i) pulse combining gain, which is a factor NfN_f, and (ii) pulse spreading gain, which is Nc=Tf/TcN_c=T_f/T_c, where TfT_f is the mean interval between two subsequent pulses. This paper investigates the trade-off between these two types of processing gain in the presence of timing jitter. First, an additive white Gaussian noise (AWGN) channel is considered and approximate closed form expressions for bit error probability are derived for impulse radio systems with and without pulse-based polarity randomization. Both symbol-synchronous and chip-synchronous scenarios are considered. The effects of multiple-access interference and timing jitter on the selection of optimal system parameters are explained through theoretical analysis. Finally, a multipath scenario is considered and the trade-off between processing gains of a synchronous impulse radio system with pulse-based polarity randomization is analyzed. The effects of the timing jitter, multiple-access interference and inter-frame interference are investigated. Simulation studies support the theoretical results.Comment: To appear in the IEEE Transactions on Communication

    On the Effects of Estimation Error and Jitter in Ultra-Wideband Communication

    Get PDF
    The opening of the 3.6 - 10.1 GHz frequency spectrum below the \u27noise-floor\u27 by the FCC in 2002 has made possible the prospect of reusing this frequency spectrum through ultra-wideband (UWB) communication. In this thesis, we compare the performance of several UWB systems in the presence of estimation error and jitter. We then develop two alternative decision schemes to combat the effect of jitter in the UWB system. Numerical results show that one of the schemes provides significantly better performance in the presence of severe jitter than maximal ratio combining and minimal degradation of performance if jitter is not present. A generalized maximal ratio combining decision scheme to combat the presence of estimation error is also proposed. It is shown that the generalized scheme outperforms traditional maximal ratio combining

    System design and validation of multi-band OFDM wireless communications with multiple antennas

    Get PDF
    [no abstract

    Wireless Technologies in Factory Automation

    Get PDF

    Mean acquisition time analysis of fixed-step serial search algorithms

    Get PDF
    Cataloged from PDF version of article.In this paper, mean acquisition time (MAT) analysis of fixed-step serial search (FSSS) algorithms is presented. First, it is shown that the MAT of an FSSS algorithm can be obtained from that of a conventional serial search (CSS) algorithm after a certain mapping of the uncertainty region. Then, a generic formula for the MAT of FSSS algorithms is derived, which is valid for both dense and sparse channel environments. In addition, MAT formulas for high signal-to-noise ratio scenarios, for large uncertainty regions, and for dense channels are obtained as special cases of the generic solution. Finally, simulation results are presented to verify the analysis and to investigate the factors that affect the optimal step size for FSSS algorithms

    Ultra-wideband impulse radio with diversity reception

    Get PDF
    Master'sMASTER OF ENGINEERIN

    UWB communication systems acquisition at symbol rate sampling for IEEE standard channel models

    Get PDF
    For ultra-wideband (UWB) communications, acquisition is challenging. The reason is from the ultra short pulse shape and ultra dense multipath interference. Ultra short pulse indicates the acquisition region is very narrow. Sampling is another challenge for UWB design due to the need for ultra high speed analog-to digital converter.A sub-optimum and under-sampling scheme using pilot codes as transmitted reference is proposed here for acquisition. The sampling rate for the receiver is at the symbol rate. A new architecture, the reference aided matched filter is studied in this project. The reference aided matched filter method avoids using complex rake receiver to estimate channel parameters and high sampling rate for interpolation. A limited number of matched filters are used as a filter bank to search for the strongest path. Timing offset for acquisition is then estimated and passed to an advanced verification algorithm. For optimum performance of acquisition, the adaptive post detection integration is proposed to solve the problem from dense inter-symbol interference during the acquisition. A low-complex early-late gate tracking loop is one element of the adaptive post detection integration. This tracking scheme assists in improving acquisition accuracy. The proposed scheme is evaluated using Matlab Simulink simulations in term of mean acquisition time, system performance and false alarm. Simulation results show proposed algorithm is very effective in ultra dense multipath channels. This research proves reference aided acquisition with tracking loop is promising in UWB application
    corecore