7 research outputs found

    Optimal joint routing and link scheduling for real-time traffic in TDMA Wireless Mesh Networks

    Get PDF
    We investigate the problem of joint routing and link scheduling in Time-Division Multiple Access (TDMA) Wireless Mesh Networks (WMNs) carrying real-time traffic. We propose a framework that always computes a feasible solution (i.e. a set of paths and link activations) if there exists one, by optimally solving a mixed integer-non linear problem. Such solution can be computed in minutes or tens thereof for e.g. grids of up to 4x4 nodes. We also propose heuristics based on Lagrangian decomposition to compute suboptimal solutions considerably faster and/or for larger WMNs, up to about 50 nodes. We show that the heuristic solutions are near-optimal, and we exploit them to investigate the optimal placement of one or more gateways from a delay bound perspective

    Optimal joint routing and link scheduling for real-time traffic in TDMA Wireless Mesh Networks

    Get PDF
    We investigate the problem of joint routing and link scheduling in Time-Division Multiple Access (TDMA) Wireless Mesh Networks (WMNs) carrying real-time traffic. We propose a framework that always computes a feasible solution (i.e. a set of paths and link activations) if there exists one, by optimally solving a mixed integer-non linear problem. Such solution can be computed in minutes or tens thereof for e.g. grids of up to 4x4 nodes. We also propose heuristics based on Lagrangian decomposition to compute suboptimal solutions considerably faster and/or for larger WMNs, up to about 50 nodes. We show that the heuristic solutions are near-optimal, and we exploit them to gain insight on the schedulability in WMN, i.e. to investigate the optimal placement of one or more gateways from a delay bound perspec-tive, and to investigate how the schedulability is affected by the transmission range

    Parameterized mixed graph coloring

    Get PDF
    Coloring of mixed graphs that contain both directed arcs and undirected edges is relevant for scheduling of unit-length jobs with precedence constraints andconflicts. The classic GHRV theorem (attributed to Gallai, Hasse, Roy, and Vitaver) relates graph coloring to longest paths. It can be extended to mixed graphs. In the present paper we further extend the GHRV theorem to weighted mixed graphs. As a byproduct this yields a kernel and a parameterized algorithm (with the number of undirected edges as parameter) that is slightly faster than the brute-force algorithm. The parameter is natural since the directed version is polynomial whereas the undirected version is NP-complete. Furthermore we point out a new polynomial case where the edges form a clique

    A wide-ranging computational comparison of high-performance graph colouring algorithms

    Get PDF
    This paper reviews the current state of the literature surrounding methods for the general graph colouring problem and presents a broad comparison of six high-performance algorithms, each belonging to one of the main algorithmic schemes identified. Unlike many previous computational studies in graph colouring, a large range of both artificially generated and real-world graphs are considered, culminating in over 40,000 individual trials that have consumed more than a decade of computation time in total. The picture painted by the comparison is complex, with each method outperforming all others on at least one occasion; however, general patterns are also observed, particularly with regards to the advantages of hybridising local-search techniques with global-based operators

    Problèmes de tournées de véhicules et application industrielle pour la réduction de l'empreinte écologique

    Get PDF
    Dans cette thèse, nous nous sommes intéressés à la résolution approchée de problèmes de tournées de véhicules. Nous avons exploité des travaux menés sur les graphes d'intervalles et des propriétés de dominance relatives aux tournées saturées pour traiter les problèmes de tournées sélectives plus efficacement. Des approches basées sur un algorithme d'optimisation par essaim particulaire et un algorithme mémétique ont été proposées. Les métaheuristiques développées font appel à un ensemble de techniques particulièrement efficaces telles que le découpage optimal, les opérateurs de croisement génétiques ainsi que des méthodes de recherches locales. Nous nous sommes intéressés également aux problèmes de tournées classiques avec fenêtres de temps. Différents prétraitements ont été introduits pour obtenir des bornes inférieures sur le nombre de véhicules. Ces prétraitements s'inspirent de méthodes issues de modèles de graphes, de problème d'ordonnancement et de problèmes de bin packing avec conflits. Nous avons montré également l'utilité des méthodes développées dans un contexte industriel à travers la réalisation d'un portail de services mobilité.In this thesis, we focused on the development of heuristic approaches for solvingvehicle routing problems. We exploited researches conducted on interval graphsand dominance properties of saturated tours to deal more efficiently with selectivevehicle routing problems. An adaptation of a particle swarm optimization algorithmand a memetic algorithm is proposed. The metaheuristics that we developed arebased on effective techniques such as optimal split, genetic crossover operatorsand local searches. We are also interested in classical vehicle problems with timewindows. Various pre-processing methods are introduced to obtain lower boundson the number of vehicles. These methods are based on many approaches usinggraph models, scheduling problems and bin packing problems with conflicts. Wealso showed the effectiveness of the developed methods with an industrial applicationby implementing a portal of mobility services.COMPIEGNE-BU (601592101) / SudocSudocFranceF

    On edge orienting methods for graph coloring

    No full text
    We consider the problem of orienting the edges of a graph so that the length of a longest path in the resulting digraph is minimum. As shown by Gallai, Roy and Vitaver, this edge orienting problem is equivalent to finding the chromatic number of a graph. We study various properties of edge orienting methods in the context of local search for graph coloring. We then exploit these properties to derive four tabu search algorithms, each based on a different neighborhood. We compare these algorithms numerically to determine which are the most promising and to give potential research directions.
    corecore