2,048 research outputs found

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Sensitivity of NEXT-100 detector to neutrinoless double beta decay

    Get PDF
    Nesta tese estúdiase a sensibilidade do detector NEXT-100 á desintegración dobre beta sen neutrinos. Existe un gran interese na busca desta desintegración xa que podería respostar preguntas fundamentais en física de neutrinos. O detector constitúe a terceira fase do experimento NEXT, colaboración na que se desenrolou esta tese. A continuación inclúese un resumo de cada un dos capítulos nos que se divide a tese. Comézase introducindo o marco teórico e experimental nas seccións Física de neutrinos, A busca da desintegración dobre beta sen neutrinos e O experimento NEXT. Posteriormente descríbense a parte principal do análise da tese en Simulación do detector, Procesamento de datos e Sensibilidade do detector NEXT-100

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    ACiS: smart switches with application-level acceleration

    Full text link
    Network performance has contributed fundamentally to the growth of supercomputing over the past decades. In parallel, High Performance Computing (HPC) peak performance has depended, first, on ever faster/denser CPUs, and then, just on increasing density alone. As operating frequency, and now feature size, have levelled off, two new approaches are becoming central to achieving higher net performance: configurability and integration. Configurability enables hardware to map to the application, as well as vice versa. Integration enables system components that have generally been single function-e.g., a network to transport data—to have additional functionality, e.g., also to operate on that data. More generally, integration enables compute-everywhere: not just in CPU and accelerator, but also in network and, more specifically, the communication switches. In this thesis, we propose four novel methods of enhancing HPC performance through Advanced Computing in the Switch (ACiS). More specifically, we propose various flexible and application-aware accelerators that can be embedded into or attached to existing communication switches to improve the performance and scalability of HPC and Machine Learning (ML) applications. We follow a modular design discipline through introducing composable plugins to successively add ACiS capabilities. In the first work, we propose an inline accelerator to communication switches for user-definable collective operations. MPI collective operations can often be performance killers in HPC applications; we seek to solve this bottleneck by offloading them to reconfigurable hardware within the switch itself. We also introduce a novel mechanism that enables the hardware to support MPI communicators of arbitrary shape and that is scalable to very large systems. In the second work, we propose a look-aside accelerator for communication switches that is capable of processing packets at line-rate. Functions requiring loops and states are addressed in this method. The proposed in-switch accelerator is based on a RISC-V compatible Coarse Grained Reconfigurable Arrays (CGRAs). To facilitate usability, we have developed a framework to compile user-provided C/C++ codes to appropriate back-end instructions for configuring the accelerator. In the third work, we extend ACiS to support fused collectives and the combining of collectives with map operations. We observe that there is an opportunity of fusing communication (collectives) with computation. Since the computation can vary for different applications, ACiS support should be programmable in this method. In the fourth work, we propose that switches with ACiS support can control and manage the execution of applications, i.e., that the switch be an active device with decision-making capabilities. Switches have a central view of the network; they can collect telemetry information and monitor application behavior and then use this information for control, decision-making, and coordination of nodes. We evaluate the feasibility of ACiS through extensive RTL-based simulation as well as deployment in an open-access cloud infrastructure. Using this simulation framework, when considering a Graph Convolutional Network (GCN) application as a case study, a speedup of on average 3.4x across five real-world datasets is achieved on 24 nodes compared to a CPU cluster without ACiS capabilities

    Fuzzy Natural Logic in IFSA-EUSFLAT 2021

    Get PDF
    The present book contains five papers accepted and published in the Special Issue, “Fuzzy Natural Logic in IFSA-EUSFLAT 2021”, of the journal Mathematics (MDPI). These papers are extended versions of the contributions presented in the conference “The 19th World Congress of the International Fuzzy Systems Association and the 12th Conference of the European Society for Fuzzy Logic and Technology jointly with the AGOP, IJCRS, and FQAS conferences”, which took place in Bratislava (Slovakia) from September 19 to September 24, 2021. Fuzzy Natural Logic (FNL) is a system of mathematical fuzzy logic theories that enables us to model natural language terms and rules while accounting for their inherent vagueness and allows us to reason and argue using the tools developed in them. FNL includes, among others, the theory of evaluative linguistic expressions (e.g., small, very large, etc.), the theory of fuzzy and intermediate quantifiers (e.g., most, few, many, etc.), and the theory of fuzzy/linguistic IF–THEN rules and logical inference. The papers in this Special Issue use the various aspects and concepts of FNL mentioned above and apply them to a wide range of problems both theoretically and practically oriented. This book will be of interest for researchers working in the areas of fuzzy logic, applied linguistics, generalized quantifiers, and their applications

    Swift: A modern highly-parallel gravity and smoothed particle hydrodynamics solver for astrophysical and cosmological applications

    Full text link
    Numerical simulations have become one of the key tools used by theorists in all the fields of astrophysics and cosmology. The development of modern tools that target the largest existing computing systems and exploit state-of-the-art numerical methods and algorithms is thus crucial. In this paper, we introduce the fully open-source highly-parallel, versatile, and modular coupled hydrodynamics, gravity, cosmology, and galaxy-formation code Swift. The software package exploits hybrid task-based parallelism, asynchronous communications, and domain-decomposition algorithms based on balancing the workload, rather than the data, to efficiently exploit modern high-performance computing cluster architectures. Gravity is solved for using a fast-multipole-method, optionally coupled to a particle mesh solver in Fourier space to handle periodic volumes. For gas evolution, multiple modern flavours of Smoothed Particle Hydrodynamics are implemented. Swift also evolves neutrinos using a state-of-the-art particle-based method. Two complementary networks of sub-grid models for galaxy formation as well as extensions to simulate planetary physics are also released as part of the code. An extensive set of output options, including snapshots, light-cones, power spectra, and a coupling to structure finders are also included. We describe the overall code architecture, summarize the consistency and accuracy tests that were performed, and demonstrate the excellent weak-scaling performance of the code using a representative cosmological hydrodynamical problem with \approx300300 billion particles. The code is released to the community alongside extensive documentation for both users and developers, a large selection of example test problems, and a suite of tools to aid in the analysis of large simulations run with Swift.Comment: 39 pages, 18 figures, submitted to MNRAS. Code, documentation, and examples available at www.swiftsim.co

    Tools for efficient Deep Learning

    Get PDF
    In the era of Deep Learning (DL), there is a fast-growing demand for building and deploying Deep Neural Networks (DNNs) on various platforms. This thesis proposes five tools to address the challenges for designing DNNs that are efficient in time, in resources and in power consumption. We first present Aegis and SPGC to address the challenges in improving the memory efficiency of DL training and inference. Aegis makes mixed precision training (MPT) stabler by layer-wise gradient scaling. Empirical experiments show that Aegis can improve MPT accuracy by at most 4\%. SPGC focuses on structured pruning: replacing standard convolution with group convolution (GConv) to avoid irregular sparsity. SPGC formulates GConv pruning as a channel permutation problem and proposes a novel heuristic polynomial-time algorithm. Common DNNs pruned by SPGC have maximally 1\% higher accuracy than prior work. This thesis also addresses the challenges lying in the gap between DNN descriptions and executables by Polygeist for software and POLSCA for hardware. Many novel techniques, e.g. statement splitting and memory partitioning, are explored and used to expand polyhedral optimisation. Polygeist can speed up software execution in sequential and parallel by 2.53 and 9.47 times on Polybench/C. POLSCA achieves 1.5 times speedup over hardware designs directly generated from high-level synthesis on Polybench/C. Moreover, this thesis presents Deacon, a framework that generates FPGA-based DNN accelerators of streaming architectures with advanced pipelining techniques to address the challenges from heterogeneous convolution and residual connections. Deacon provides fine-grained pipelining, graph-level optimisation, and heuristic exploration by graph colouring. Compared with prior designs, Deacon shows resource/power consumption efficiency improvement of 1.2x/3.5x for MobileNets and 1.0x/2.8x for SqueezeNets. All these tools are open source, some of which have already gained public engagement. We believe they can make efficient deep learning applications easier to build and deploy.Open Acces
    corecore