
Worst-Case Optimal Algorithms for Parallel Query
Processing∗

Paraschos Koutris1, Paul Beame2, and Dan Suciu3

1 University of Washington, Seattle, WA, USA
pkoutris@cs.washington.edu

2 University of Washington, Seattle, WA, USA
beame@cs.washington.edu

3 University of Washington, Seattle, WA, USA
suciu@cs.washington.edu

Abstract
In this paper, we study the communication complexity for the problem of computing a conjunctive
query on a large database in a parallel setting with p servers. In contrast to previous work, where
upper and lower bounds on the communication were specified for particular structures of data
(either data without skew, or data with specific types of skew), in this work we focus on worst-case
analysis of the communication cost. The goal is to find worst-case optimal parallel algorithms,
similar to the work of [17] for sequential algorithms.

We first show that for a single round we can obtain an optimal worst-case algorithm. The
optimal load for a conjunctive query q when all relations have size equal to M is O(M/p1/ψ∗),
where ψ∗ is a new query-related quantity called the edge quasi-packing number, which is different
from both the edge packing number and edge cover number of the query hypergraph. For
multiple rounds, we present algorithms that are optimal for several classes of queries. Finally,
we show a surprising connection to the external memory model, which allows us to translate
parallel algorithms to external memory algorithms. This technique allows us to recover (within
a polylogarithmic factor) several recent results on the I/O complexity for computing join queries,
and also obtain optimal algorithms for other classes of queries.

1998 ACM Subject Classification H.2.4 [Systems] Query Processing

Keywords and phrases conjunctive query, parallel computation, worst-case bounds

Digital Object Identifier 10.4230/LIPIcs.ICDT.2016.8

1 Introduction

The last decade has seen the development and widespread use of massively parallel systems
that perform data analytics tasks over big data: examples of such systems are MapReduce [7],
Dremel [16], Spark [21] and Myria [10]. In contrast to traditional database systems, where the
computational complexity is dominated by the disk access time, the data now typically fits in
main memory, and the dominant cost becomes that of communicating data and synchronizing
among the servers in the cluster.

In this paper, we present a worst-case analysis of algorithms for processing of conjunctive
queries (multiway join queries) on such massively parallel systems. Our analysis is based
on the Massively Parallel Computation model, or MPC [4, 5]. MPC is a theoretical model
where the computational complexity of an algorithm is characterized by both the number of

∗ This work is partially supported by NSF IIS-1247469, AitF 1535565, CCF-1217099 and CCF-1524246.

© Paraschos Koutris, Paul Beame, and Dan Suciu;
licensed under Creative Commons License CC-BY

19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Worst-Case Optimal Algorithms for Parallel Query Processing

rounds (so the number of synchronization barriers) and the maximum amount of data, or
maximum load, that each processor receives at every round.

The focus of our analysis on worst-case behavior of algorithms is a fundamentally different
approach from previous work, where optimality of a parallel algorithm was defined for a
specific input, or a specific family of inputs. Here we obtain upper bounds on the load of the
algorithm across all possible types of input data. To give a concrete example, consider the
simple join between two binary relations R and S of size M in bits (and m tuples), denoted
q(x, y, z) = R(x, z), S(y, z), and suppose that the number of servers is p. In the case where
there is no data skew (which means in our case that the frequency of each value of the z
variable in both R and S is at most m/p), it has been shown in [5] that the join can be
computed in a single round with load Õ(M/p) (where the notation Õ hides a polylogarithmic
factor depending on p), by simply hashing each tuple according to the value of the z variable.
However, if the z variable is heavily skewed both in R and S (and in particular if there
exists a single value of z), computing the query becomes equivalent to computing a cartesian
product, for which we need Ω(M/p1/2) load. In this scenario, although for certain instances
we can obtain better guarantees for the load, the heavily skewed instance is a worst-case
input, in the sense that the lower bound Ω(M/p1/2) specifies the worst possible load that
we may encounter. Our goal is to design algorithms for single or multiple rounds that are
optimal with respect to such worst-case inputs and never incur larger load for any input.

Related Work. Algorithms for joins in the MPC model were previously analyzed in [4, 5].
In [4], the authors presented algorithms for one and multiple rounds on input data without
skew (in particular when each value appears exactly once in each relation, which is a called a
matching database). In [5], the authors showed that the HyperCube (HC) algorithm, first
presented by Afrati and Ullman [2], can optimally compute any conjunctive query for a single
round on data without skew. The work in [5] also presents one-round algorithms and lower
bounds for skewed data but the upper and lower bounds do not necessarily coincide.

Several other computation models have been proposed in order to understand the power
of MapReduce and related massively parallel programming paradigms [8, 13, 15, 1]. All these
models identify the number of communication steps/rounds as a main complexity parameter,
but differ in their treatment of the communication. Previous work [20, 14] has also focused
on computing various graph problems in message-passing parallel models. In contrast to this
work, where we focus on algorithms that require a constant number of rounds, the authors
consider algorithms that need a large number of rounds.

Our setting and worst-case analysis can be viewed as the analogous version of the work
of Ngo et al. [17] on worst-case optimal algorithms for multiway join processing. As we will
show later, the worst-case instances for a given query q are different for the two settings
in the case of one round, but coincide for all the families of queries we examine when we
consider multiple rounds.

Our Contributions. We first present in Section 3 tight upper and lower bounds for the
worst-case load of one-round algorithms for any full conjunctive query q without self-joins.1
The optimal algorithm uses a different parametrization (share allocation) of the HyperCube
algorithm for different parts of the input data, according to the values that are skewed. In

1 The restriction to queries without self-joins is not limiting, since we can extend our result to queries
with self-joins (by losing a constant factor) by treating copies of a relation as distinct relations. The
parallel complexity for queries with projections is however an open question.

P. Koutris, P. Beame, and D. Suciu 8:3

the case where all relation sizes are equal to M , the algorithm achieves an optimal load
Õ(M/p1/ψ∗(q)), where ψ∗(q) is the edge quasi-packing number of the query q. An edge
quasi-packing is an edge packing on any vertex-induced projection of the query hypergraph
(in which we shrink hyperedges when we remove vertices).

In Section 4, we show that for any full conjunctive query q, any algorithm with a constant
number of rounds requires a load of Ω(M/p1/ρ∗), where ρ∗ is the edge cover number. We
then present optimal (within a polylogarithmic factor) multi-round algorithms for several
classes of join queries. Our analysis shows that some queries (such as the star query Tk) can
be optimally computed using the optimal single-round algorithm from Section 3. However,
other classes of queries, such as the cycle query Ck for k 6= 4, the line query Lk, or the
Loomis-Whitney join LWk require 2 or more rounds to achieve the optimal load. For example,
we present an algorithm for the full query (or clique) Kk that uses k − 1 rounds to achieve
the optimal load (although it is open whether only 2 rounds are sufficient).

Finally, in Section 5 we present a surprising application of our results in the setting of
external memory algorithms. In this setting, the input data does not fit into main memory,
and the dominant cost of an algorithm is the I/O complexity: reading the data from the disk
into the memory and writing data on the disk. In particular, we show that we can simulate
an MPC algorithm in the external memory setting, and obtain almost-optimal (within a
polylogarithmic factor) external memory algorithms for computing triangle queries; the same
technique can be easily applied to other classes of queries.

2 Background

In this section, we introduce the MPC model and present the necessary terminology and
technical tools that we will use later in the paper.

2.1 The MPC Model

We first review the Massively Parallel Computation model (MPC), which allows us to analyze
the performance of algorithms in parallel environments. In the MPC model, computation is
performed by p servers, or processors, connected by a complete network of private channels.
The computation proceeds in steps, or rounds, where each round consists of two distinct
phases. In the communication phase, the servers exchange data, each by communicating with
all other servers. In the computation phase, each server performs only local computation.

The input data of size M bits is initially uniformly partitioned among the p servers, that
is, each server stores M/p bits of data. At the end of the execution, the output must be
present in the union of the output of the p processors.

The execution of a parallel algorithm in the MPC model is captured by two parameters.
The first parameter is the number of rounds r that the algorithm requires. The second
parameter is the maximum load L, which measures the maximum amount of data (in bits)
received by any server during any round.

All the input data will be distributed during some round, since we need to perform some
computation on it. Thus, at least one server will receive at least data of size M/p. On the
other hand, the maximum load will never exceed M , since any problem can be trivially
solved in one round by simply sending the entire data to server 1, which can then compute
the answer locally. Our typical loads will be of the form M/p1−ε, for some parameter ε
(0 ≤ ε < 1) that depends on the query. For a similar reason, we do not allow the number of
rounds to reach r = p, because any problem can be trivially solved in p rounds by sending

ICDT 2016

8:4 Worst-Case Optimal Algorithms for Parallel Query Processing

M/p bits of data at each round to server 1, until this server accumulates the entire data. In
this paper we only consider the case r = O(1).

2.2 Conjunctive Queries
In this paper we focus on a particular class of problems for the MPC model, namely computing
answers to conjunctive queries over a database. We fix an input vocabulary S1, . . . , S`, where
each relation Sj has a fixed arity aj ; we denote a =

∑`
j=1 aj . The input data consists of one

relation instance for each symbol.
We consider full conjunctive queries (CQs) without self-joins, denoted as follows:

q(x1, . . . , xk) = S1(. . .), . . . , S`(. . .) .

The query is full, meaning that every variable in the body appears in the head (for example
q(x) = S(x, y) is not full), and without self-joins, meaning that each relation name Sj appears
only once (for example q(x, y, z) = S(x, y), S(y, z) has a self-join). We use vars(Sj) to denote
the set of variables in the atom Sj , and vars(q) to denote the set of variables in all atoms of q.
Further, k and ` denote the number of variables and atoms in q respectively. The hypergraph
of a conjunctive query q is defined by introducing one node for each variable in the body
and one hyperedge for each set of variables that occur in a single atom.

The fractional edge packing associates a non-negative weight uj to each atom Sj such that
for every variable xi, the sum of the weights for the atoms that contain xi does not exceed 1.
We let pk(q) denote the set of all fractional edge packings for q. The fractional covering number
τ∗ is the maximum sum of weights over all possible edge packings, τ∗(q) = maxu∈pk(q)

∑
j uj .

The fractional edge cover associates a non-negative weight wj to each atom Sj , such that
for every variable xi, the sum of the weights of the atoms that contain xi is at least 1. The
fractional edge cover number ρ∗ is the minimum sum of weights over all possible fractional
edge covers. The notion of the fractional edge cover has been used in the literature [3, 17] to
provide lower bounds on the worst-case output size of a query (and consequently the running
time of join processing algorithms).

For any x ⊆ vars(q), we define the residual query qx as the query obtained from q

by removing all variables x, and decreasing the arity of each relation accordingly (if the
arity becomes zero we simply remove the relation). For example, for the triangle query
q(x, y, z) = R(x, y), S(y, z), T (z, x), the residual query q{x} is q{x}(y, z) = R(y), S(y, z), T (z).
Similarly, q{x,y}(z) = S(z), T (z). Observe that every fractional edge packing of q is also a
fractional edge packing of any residual query qx, but the converse is not true in general.

We now define the fractional edge quasi-packing to be any edge packing of a residual query
qx of q, where the atoms that have only variables in x get a weight of 0. Denote by pk+(q)
the set of all edge quasi-packings. It is straightforward to see that pk(q) ⊆ pk+(q); in other
words, any packing is a quasi-packing as well. The converse is not true, since for example
(1, 1, 0) is a quasi-packing for the triangle query, but not a packing. The edge quasi-packing
number ψ∗ is the maximum sum of weights over all edge quasi-packings:

ψ∗(q) = max
u∈pk+(q)

∑
j

uj = max
x⊆vars(q)

max
u∈pk(qx)

∑
j

uj .

2.3 Previous Results
Suppose that we are given a full CQ q, and input such that relation Sj has size Mj in bits
(we use mj for the number of tuples). Let M = (M1, . . . ,M`) be the vector of the relation

P. Koutris, P. Beame, and D. Suciu 8:5

sizes. For a given fractional edge packing u ∈ pk(q), we define as in [5]:

L(u,M, p) =
(∏`

j=1 M
uj

j

p

)1/
∑`

j=1
uj

(1)

Let us also define L(q)(M, p) = maxu∈pk(q) L(u,M, p). In our previous work [5], we
showed that any algorithm that computes q in a single round with p servers must have
load L ≥ L(q)(M, p). The instances used to prove this lower bound is the class of matching
databases, which are instances where each value appears exactly once in the attribute of each
relation. Hence, the above lower bound is not necessarily tight; indeed, as we will see in the
next section, careful choice of skewed input instances can lead to a stronger lower bound.

The HyperCube algorithm. To compute conjunctive queries in the MPC model, we use
the basic primitive of the HyperCube (HC) algorithm. The algorithm was first introduced by
Afrati and Ullman [2], and was later called the shares algorithm; we use the name HC to
refer to the algorithm with a particular choice of shares. The HC algorithm initially assigns
to each variable xi a share pi, such that

∏k
i=1 pi = p. Each server is then represented by

a distinct point y ∈ P, where P = [p1] × · · · × [pk]; in other words, servers are mapped
into a k-dimensional hypercube. The HC algorithm then uses k independently chosen hash
functions hi : {1, . . . , n} → {1, . . . , pi} (where n is the domain size) and sends each tuple t of
relation Sj to all servers in the destination subcube of t:

D(t) = {y ∈ P | ∀xi ∈ vars(Sj) : hi(t[xi]) = yi}

where t[xi] denotes the value of tuple t at the position of the variable xi. After the tuples
are received, each server locally computes q for the subset of the input that it has received.

If the input data has no skew, the above vanilla version of the HC algorithm is optimal
for a single round. The lemma below presents the specific conditions that define skew, and
will be frequently used throughout the paper.

I Lemma 1 (Load Analysis for HC [5]). Let p = (p1, . . . , pk) be the optimal shares of the HC
algorithm. Suppose that for every relation Sj and every tuple t over the attributes U ⊆ [aj]
we have that the frequency of t in relation Sj is mSj (t) ≤ mj/

∏
i∈U pi. Then with high

probability the maximum load per server is Õ(L(q)(M, p)).

3 One-Round Algorithms

In this section, we present tight upper and lower bounds for the worst-case load of one-round
algorithms that compute conjunctive queries. Thus, we identify the database instances for
which the behavior in a parallel setting is the worst possible. Surprisingly, these instances are
often different from the ones that provide a worst-case running time in a non-parallel setting.

As an example, consider the triangle query C3 = R(x, y), S(y, z), T (z, x), where all
relations have m tuples (and M in bits). It is known from [3] that the class of inputs that
will give a worst-case output size, and hence a worst-case running time, is one where each
relation is a

√
m×

√
m fully bipartite graph. In this case, the output has m3/2 tuples. The

load needed to compute C3 on this input in a single round is Ω(M/p2/3), and can be achieved
by using the HyperCube algorithm [4] with shares p1/3 for each variable. Now, consider the
instance where relations R, T have a single value at variable x, which participates in all the
m tuples in R and T ; S is a matching relation with m tuples. In this case, the output has m

ICDT 2016

8:6 Worst-Case Optimal Algorithms for Parallel Query Processing

tuples (and so M bits), and thus is smaller than the worst-case output. However, as we will
see next, we can show that any one-round algorithm that computes the triangle query for
the above input structure requires Ω(M/p1/2) maximum load.

3.1 An Optimal Algorithm
We present here a worst-case optimal one-step algorithm that computes a conjunctive query
q. Recall that the HC algorithm achieves an optimal load on data without skew [5]. In
the presence of skew, we will distinguish different cases, and for each case we will apply a
different parametrization of the HC algorithm, using different shares.

We say that a value h in relation Sj is a heavy hitter in Sj if the frequency of this
particular value in Sj , denoted mSj

(h), is at least mj/p, where mj is the number of tuples
in the relation. Given an output tuple t, we say that t is heavy at variable xi if the value
t[xi] is a heavy hitter in at least one of the atoms that include variable xi.

We can now classify each tuple t in the output depending on the positions where t is
heavy. In particular, for any x ⊆ vars(q), let q[x](I) denote the subset of the output that
includes only the output tuples that are heavy at exactly the variables in x. Observe that
the case q[∅](I) denotes the case where the tuples are light at all variables; we know from
an application of Lemma 1 that this case can be handled by the standard HC algorithm.
For each of the remaining 2k − 1 possible sets x ⊆ vars(q), we will run a different variation
of the HC algorithm with different shares, which will allow us to compute q[x](I) with the
appropriate load. Our algorithm will compute all the partial answers in parallel for each
x ⊆ vars(q), and thus requires only a single round.

The key idea is to apply the HC algorithm by giving a non-trivial share only to the
variables that are not in x; in other words, every variable in x gets a share of 1. In particular,
we will assign to the remaining variables the shares we would assign if we would execute the
HC algorithm for the residual query qx. We will thus choose the shares by assigning pi = pei

for each xi ∈ x and solving the following linear program:

minimize λ

subject to
∑
i:xi /∈x

−ei ≥ −1

∀j s.t. Sj ∈ atoms(qx) :
∑

i:xi∈vars(Sj)\x

ei + λ ≥ µj

∀i s.t. xi /∈ x :ei ≥ 0, λ ≥ 0 (2)

For each variable xi ∈ x, we set ei = 0 and thus the share is pi = 1. We next present the
analysis of the load for the above algorithm.

I Theorem 2. Any full conjunctive query q with input relation sizes M can be computed in
the MPC model in a single round using p servers with maximum load

L = Õ

(
max

x⊆vars(q)
L(qx)(M, p)

)
.

Proof. Let us fix a set of variables x ⊆ vars(q); we will show that the load of the algorithm
that computes q[x](I) is Õ(L(qx)(M, p)). The upper bound then follows from the fact that
we are running in parallel algorithms for all partial answers.

Indeed, let us consider how each relation Sj is distributed using the shares assigned. We
distinguish two cases. If an atom Sj contains variables that are only in x, then the whole

P. Koutris, P. Beame, and D. Suciu 8:7

relation will be broadcast to all the p servers. However, observe that the part of Sj that
contributes to q[x](I) is of size at most paj , where aj is the arity of the relation.

Otherwise, we will show that for every tuple J of values over variables v ⊆ vars(Sj), we
have that the frequency of J is at most mj/

∏
i:xi∈v pi. Indeed, if v contains only variables

from x, then by construction
∏
i:xi∈v pi = 1; we observe then that the frequency is always

at most mj . If v contains some variable xi ∈ v \ x, then the tuple J contains at position
xi a value that appears at most mj/p times in relation Sj , and since

∏
i:xi∈v pi ≤ p the

claim holds. We can now apply Lemma 1 to obtain that for relation Sj , the load will be
Õ(Mj/(

∏
i:xi∈vars(Sj)\x pi)). Summing over all atoms in the residual query qx, and assuming

that mj � p (and in particular that paj is always much smaller than the load), we obtain
that the load will be Õ(maxj:Sj∈atoms(qx) Mj/(

∏
i:xi∈vars(Sj)\x pi)), which by an LP duality

argument is equal to Õ(L(qx)(M, p)). J

When all relation sizes are equal, that is, M1 = M2 = · · · = M` = M , the formula for
the maximum load becomes Õ(M/p1/ψ∗(q)), where ψ∗(q) is the edge quasi-packing number,
which we have defined as ψ∗(q) = maxx⊆vars(q) maxu∈pk(qx)

∑
j uj . We will discuss about the

quantity ψ∗(q) in detail in Section 3.3. We will see next how the above algorithm applies to
the triangle query C3.

I Example 3. We will describe first how the algorithm works when each relation has size M
(and m tuples). There are three different share allocations, for each choice of heavy variables
(all other cases are symmetrical).
x = ∅ : we consider only tuples with values of frequency ≤ m/p. The HC algorithm will

assign a share of p1/3 to each variable, and the maximum load will be Õ(M/p2/3).
x = {x} : the tuples have a heavy hitter value at variable x, either in relation R or T or in

both. The algorithm will give a share of 1 to x, and shares of p1/2 to y and z. The load
will be Õ(M/p1/2).

x = {x, y} : both x and y are heavy. In this case we broadcast the relation R(x, y), which
will have size at most p2, and assign a share of p to z. The load will be Õ(M/p).

Notice finally that the case where x = {x, y, z} can be handled by broadcasting all
necessary information. The load of the algorithm is the maximum of the above quantities,
thus Õ(M/p1/2). When the size vector is M = (M1,M2,M3), the load achieved becomes
Õ(L), where: L = max

{
M1
p ,

M2
p ,

M3
p ,
√

M1M2
p ,

√
M2M3
p ,

√
M1M3
p

}
.

3.2 Lower Bounds
We present here a worst-case lower bound for the load of one-step algorithms for computing
conjunctive queries in the MPC model, when the information known is the cardinality
statistics M = (M1, . . . ,M`). The lower bound matches the upper bound in the previous
section, hence proving that the one-round algorithm is worst-case optimal. We give a self-
contained proof of the result in the full version of this paper, but many of the techniques
used can be found in previous work [4, 5], where we proved lower bounds for skew-free data
and for input data with known information about the heavy hitters.

I Theorem 4. Fix cardinality statistics M for a full conjunctive query q. Consider any
deterministic MPC algorithm that runs in one communication round on p servers and has
maximum load L in bits. Then, for any x ⊆ vars(q), there exists a family of (random)
instances for which the load L will be:

L ≥ min
j

1
4aj
· L(qx)(M, p) .

ICDT 2016

8:8 Worst-Case Optimal Algorithms for Parallel Query Processing

Since aj ≥ 1, Theorem 4 implies that for any query q there exists a family of instances such
that any one-round algorithm that computes q must have load Ω(maxx⊆vars(q) L

(qx)(M, p)).

3.3 Discussion
We present here several examples for the load of the one-round algorithm for various classes
of queries, and also discuss the edge quasi-packing number ψ∗(q) and its connection with
other query-related quantities.

Recall that we showed that when all relation sizes are equal to M , the load achieved is of
the form Õ(M/p1/ψ∗(q)), where ψ∗(q) is the quantity that maximizes the sum of the weights
of the edge quasi-packing. ψ∗(q) is in general different from both the fractional covering
number τ∗(q), and from the fractional edge cover number ρ∗(q). Indeed, for the triangle
query C3 we have that ρ∗(C3) = τ∗(C3) = 3/2, while ψ∗(C3) = 2. Here we should remind
the reader that τ∗ describes the load for one-round algorithms on data without skew, which
is O(M/p1/τ∗(q)). Also, ρ∗ characterizes the maximum possible output of a query q, which is
Mρ∗(q). We can show the following relation between the three quantities:

I Lemma 5. For every conjunctive query q, ψ∗(q) ≥ max{τ∗(q), ρ∗(q)}.

Proof. Since any edge packing is also an edge quasi-packing, it is straightforward to see that
τ∗(q) ≤ ψ∗(q) for every query q.

To show that ρ∗(q) ≤ ψ∗(q), consider the optimal (minimum) edge cover u; we will show
that this is also an edge quasi-packing. First, observe that for every atom Sj , there must
exist at least one variable x ∈ vars(Sj) such that

∑
j:x∈vars(Sj) uj = 1. Indeed, suppose that

for every variable in Sj we have that the sum of the weights strictly exceeds 1; then, we can
obtain a better edge cover by slightly decreasing uj , which is a contradiction.

Now, let x be the set of variables such that their cover in u strictly exceeds 1, and
consider the residual query qx. By our previous claim, every relation in q is still present in
qx, since every relation includes a variable with cover exactly one. Further, for every variable
x ∈ vars(qx) we have

∑
j:x∈vars(Sj) uj = 1, and hence u ∈ pk(qx). J

In Table 1 we have computed the quantities τ∗, ρ∗, ψ∗ for several classes of queries of
interest: the star query Tk, the spiked star query SPk, the cycle query Ck, the line query Lk,
the Loomis-Whitney join LWk, the generalized semi-join query Wk and the clique (or full)
query Kk. We next present some of these queries in more detail.

I Example 6. Consider the star query Tk, which generalizes the simple join between relations.
As we can see, the optimal edge packing cannot be more than 1, since every relation includes
the variable z. To obtain the maximum edge quasi-packing, we simply consider the residual
query qz that removes the common variable z: then, we can pack each relation with weight
one, thus achieving a sum of k. Notice that this is an example which shows that τ∗ and ψ∗
cannot be within a constant factor.

I Example 7. Consider the full/clique query Kk, which includes all possible binary relations
among the k variables. Here the optimal edge packing is achieved by assigning a weight of
1/(k − 1) to each relation; the corresponding share allocation for the HC algorithm assigns
an equal share of p1/k to each variable. For the optimal edge quasi-packing, consider the
residual query (Kk)x1 , and notice that it includes (k − 1) unary relations, one for each of
x2, . . . , xk. Hence, we can obtain an edge packing by assigning a weight of 1 to each, which
shows that ψ∗(Kk) = k.

P. Koutris, P. Beame, and D. Suciu 8:9

Table 1 Computing the optimal edge packing τ∗, edge cover ρ∗ and edge quasi-packing ψ∗ for
several classes of conjunctive queries.

conjunctive query τ∗ ρ∗ ψ∗

Tk =
∧k

j=1 Sj(z, xj) 1 k k

SPk =
∧k

i=1 Ri(z, xi), Si(xi, yi) k k + 1 k + 1

Ck =
∧k

j=1 Sj(xj , x(j mod k)+1) k/2 k/2 d2(k − 1)/3e

Lk =
∧k

j=1 Sj(xj−1, xj) dk/2e d(k + 1)/2e d2k/3e

LWk =
∧

I⊆[k],|I|=k−1 SI(x̄I) k/(k − 1) k/(k − 1) 2

Wk = R(x1, . . . , xk)
∧k

j=1 Sj(xj) k 1 k

Kk =
∧

1≤i<j≤k
Si,j(xi, xj) k/2 k/2 k

I Example 8. Consider the cycle query Ck. The optimal edge packing assigns a weight of
1/2 to each edge; the corresponding share allocation for the HC algorithm gives an equal
share of p1/k to each variable.

To find the best x for the optimal edge quasi-packing, we will pick every third variable:
x1, x4, This creates bk/3c copies of the query S1(x1), S2(x1, x2), S3(x2), which has an
edge packing of size 2 (assign weight 1 to S1, S3). If k = 3m or k = 3m+ 1, these copies cover
the whole query. If k = 3m+ 2, we can add one more edge with weight 1 to the packing.

4 Multi-round Algorithms

In this section, we present algorithms for multi-round computation of several conjunctive
queries in the case where the relation sizes are all equal to M . We also prove a lower bound
that proves that they are (almost) optimal.

4.1 Multi-round Lower Bound
We prove here a general lower bound for any algorithm that computes conjunctive queries
using a constant number of rounds. Observe that the lower bound is expressed in terms of
number of tuples (and not bits); our upper bounds will be expressed in terms of bits, and
thus will be a log(n) factor away from the lower bound, where n is the domain size.

I Theorem 9. Let q be a conjunctive query. Then, there exists a family of instances where
relations have the same size M in bits (and m in tuples) such that every algorithm that
computes q with p servers using a constant number of rounds requires load Ω(m/p1/ρ∗(q)).

Proof. In order to prove the lower bound, we will use a family of instances that give the
maximum possible output when every input relation has at most m tuples, which is mρ∗(q)

(see [3]). We also know how we can construct such a worst-case instance: for each variable
xi we assign an integer ni (which corresponds to the domain size of the variable), and we
define each relation as the cartesian product of the domains of the variables it includes:
×i:xi∈vars(Sj)[ni]. The output size then will be

∏
i ni = mρ∗(q) (using a LP duality argument).

We now define the following random instance I as input for the query q: for each relation
Sj , we choose each tuple from the full cartesian product of the domains independently at
random with probability 1/2. It is straightforward to see that the expected size of the output
is E[|q(I)|] = (1/2)β

∏
i ni, where β is the maximum number of relations where any variable

ICDT 2016

8:10 Worst-Case Optimal Algorithms for Parallel Query Processing

occurs (and thus a constant depending on the query). Using Chernoff’s bound we can claim
an even stronger result: the output size will be Θ(mρ∗(q)) with high probability (the failure
probability is exponentially small in m).

Now, assume that algorithm A computes q with load L (in bits) in r rounds. Then, each
server receives at most L′ = r · L bits. Fix some server and let msg be the whole sequence
of bits received by this server during the computation; hence, |msg| ≤ L′. We will next
compute how many tuples from Sj are known by the server, denoted Kmsg(Sj). W.l.o.g. we
can assume that all L′ bits of msg contain information from relation Sj .

We will show that the probability of the event Kmsg(Sj) > (1 + δ)L′ is exponentially
small on δ. Let mj =

∏
i:xi∈vars(Sj) ni ≤ m. Observe first that the total number of message

configurations of size L′ is at most 2L′ . Also, since the size of the full cartesian product is
mj , msg can encode at most 2mj−(1+δ)L′ relations Sj (if mj < (1 + δ)L′, then trivially the
probability of the event is zero, and Sj will have "few" tuples). It follows that

P (Kmsg > (1 + δ)L′) < 2L
′
· 2mj−(1+δ)L′ · (1/2)mj = (1/2)δL

′
.

So far we have shown that with high probability each server knows at most L′ tuples from
each relation Sj , and further that the total number of output tuples is Θ(mρ∗(q)). However,
if a server knows L′ tuples from each relation, using the AGM bound from [3], it can output
at most (rL)ρ∗(q) tuples. The result follows by summing over the output of all p servers, and
using the fact that the algorithm has only a constant number of rounds. J

The theorem implies that whenever ψ∗(q) = ρ∗(q) the one-round algorithm is essentially
worst-case optimal, and using more rounds will not result in an algorithm with better load.
As a result, and following our discussion in the previous section, the classes of queries Tk
and SPk can be optimally computed in a single round. This may seem counterintuitive, but
recall that we study worst-case optimal algorithms; there may be instances where using more
rounds is desirable, but our goal is to match the load for the worst such instance.

We will next present algorithms that match (within a logarithmic factor) the above lower
bound using strictly more than one round. We start with the algorithm for the triangle
query C3, in order to demonstrate our novel technique and prove a key result (Lemma 10)
that we will use later in the section.

4.2 Warmup: Computing Triangles in 2 Rounds
The main component of the algorithm that computes triangles is a parallel algorithm that
computes the join S1(x, z), S2(y, z) in a single round, for the case where skew appears
exclusively in one of the two relations. If the relations have size M1,M2 respectively, then we
have shown that the load can be as large as

√
M1M2/p. However, in the case of one-sided

skew, we can compute the join with maximum load only Õ(max{M1,M2}/p).

I Lemma 10. Let q = S1(x, z), S2(y, z), and let m1 and m2 be the relation sizes (in tuples)
of S1, S2 respectively. Let m = max{m1,m2}. If the degree of every value of the variable z
in S1, mS1(z), is at most m/p, then we can compute q in a single round with p servers and
load (in bits) Õ(M/p), where M = 2m log(n) (n is the domain size).

Proof. We say that a value h is a heavy hitter in S2 if the degree of h in S2 is mS2(h) > m/p.
By our assumption, there are no heavy hitters in relation S1.

For the values h that are not heavy hitters in S2, we can compute the join by applying
the standard HC algorithm (which is a hash-join that assigns a share of p to z); the load
analysis of Lemma 1 will give us a load of Õ(M/p) with high probability.

P. Koutris, P. Beame, and D. Suciu 8:11

For every heavy hitter h, the algorithm computes the subquery q[h/z] = S1(x, h), S2(y, h),
which is equivalent to computing the residual query qz = S′1(x), S′2(y), where S′1(x) = S1(x, h)
and S′2(y) = S2(y, h). We know that |S′2| = mS2(h) and |S′1| ≤ m/p by our assumption. The
algorithm now allocates ph = dp ·mS2(h)/me exclusive servers to compute q[h/z] for each
heavy hitter h. To compute q[h/z] with ph servers, we simply use the simple broadcast join
that assigns a share of p to variable x and 1 to y. A simple analysis will give us that the
load (in tuples) for each heavy hitter h is

Õ

(
|S′2|
ph

+ |S′1|
)

= Õ

(
mS2(h)

p ·mS2(h)/m +m/p)
)

= Õ(m/p) .

Finally, observe that the total number of servers we need is
∑
h ph ≤ 2p, hence we have used

an appropriate amount of the available p servers. J

Thus, we can optimally compute joins in a single round in the presence of one-sided skew.
We can apply Lemma 10 to obtain a useful corollary for the semi-join query q = R(z), S(y, z).
Indeed, notice that we can extend R to a binary relation R′(x, z), where x is a dummy
variable that takes a single value; then, the semi-join becomes essentially a join, where R′
has no skew, since the degree of z in R′ will be always one. Consequently:

I Corollary 11. Consider the semi-join query q = R(z), S(y, z), and let M1 and M2 be the
relation sizes of R,S respectively in bits. Then we can compute q in a single round with p
servers and load Õ(max{M1,M2}/p).

We now outline the algorithm for computing triangles using two rounds. The central idea
in the algorithm is to identify the values that create skew in the computation, and spread
this computation into more rounds.

I Theorem 12. The triangle query C3 = S1(x1, x2), S2(x2, x3), S3(x3, x1) on input with sizes
M1 = M2 = M3 = M can be computed by an MPC algorithm in 2 rounds with Õ(M/p2/3)
load, under any input data distribution.

Proof. We say that a value h is heavy if for some relation Sj , we have mj(h) > m/p1/3. We
first compute the answers for the tuples that are not heavy at any variable. Indeed, if for
every value we have that the degree is at most m/p1/3, then the load analysis (Lemma 1)
tells us that we can compute the output in a single round with load Õ(M/p2/3) using the
HC algorithm that allocates a share of p1/3 to each variable.

Thus, it remains to output the tuples for which at least one variable has a heavy value.
Without loss of generality, consider the case where variable x1 has heavy values and observe
that there are at most 2p1/3 such heavy values for x1 (p1/3 for S1 and p1/3 for S3). For
each heavy value h, we assign an exclusive set of p′ = p2/3 servers to compute the query
q[h/x1] = S1(h, x2), S2(x2, x3), S3(x3, x1), which is equivalent to computing the residual
query q′ = S′1(x2), S2(x2, x3), S′3(x3).

To compute q′ with p′ servers, we use 2 rounds. In the first round, we compute in parallel
the semi-join queries S12(x2, x3) = S′1(x2), S2(x2, x3) and S23(x2, x3) = S2(x2, x3), S′3(x3).
Since |S′1| ≤ m and |S′2| ≤ m, we can apply Corollary 11 for semi-join computation to
obtain that we can achieve this computation with load (in tuples) Õ(m/p′) = Õ(m/p2/3).
Observe that the intermediate relations S12, S23 have size at most m. In the second round,
we simply perform the intersection of the relations S12, S23; this can be achieved with tuple
load O(m/p′) = O(m/p2/3).2 J

2 Observe that the load for computing the intersection of two or more relations does not have any
additional logarithmic factors.

ICDT 2016

8:12 Worst-Case Optimal Algorithms for Parallel Query Processing

Notice that the 2-round algorithm achieves a better load than the 1-round algorithm in
the worst-case scenario. Indeed, in the previous section we proved that there exist instances
for which we can not achieve load better than O(M/p1/2) in a single round. By using an
additional round, we can beat this bound and achieve a better load. This confirms our
intuition that with more rounds we can reduce the maximum load. Moreover, observe that
the load achieved matches the multi-round lower bound (within a polylogarithmic factor).

4.3 Computing General CQs
We now generalize the ideas of the above example, and extend our results to several standard
classes of conjunctive queries. Throughout this section, we assume that all relations have the
same size M in bits (and m in tuples). We present in detail optimal multiround algorithms
for odd and even cycles, which both achieve a maximum load of Õ(M/p2/k) for Ck. The
algorithm uses as a component an optimal algorithm that computes the line query Lk.
I Lemma 13. The line query Lk = S1(x0, x1), S2(x1, x2), . . . , Sk(xk−1, xk) can be computed
by an MPC algorithm with a constant number of rounds and load Õ(M/p1/d(k+1)/2e).

We then briefly present our algorithmic results for Loomis-Whitney joins and Clique
queries; the detailed proofs of the desired load are in the full version of this paper.

4.3.1 Odd Cycles
We will first show how we can compute any odd cycle Ck; the algorithm is a generalization
of the method for computing triangle queries presented as a warmup example.

We say that a value h is heavy for variable xi if for relation Si−1 or Si, we have
mi(h) > m/p1/k or mi−1(h) > m/p1/k. We first compute the answers for the tuples that are
not heavy at any position. Lemma 1 implies that we can compute the output in a single
round with load Õ(M/p2/k), by applying the vanilla HC algorithm for cycles, where each
variable has equal share p1/k.

We next compute the tuples that are heavy at variable x1 (we similarly do this for every
variable xi); observe that there are at most 2p1/k such values. For each such heavy value
h, we will assign an exclusive number of p′ = p1−1/k servers, such that the total number
of servers we use is (2p1/k) · p′ = Θ(p), and using these servers we will compute the query
q[h/x1] = S1(h, x2), . . . , Sk(xk, h), which amounts to computing the residual query q′ = qx1 :

q′ = S′1(x2), S2(x2, x3), . . . , Sk−1(xk−1, xk), S′k(xk) .

To compute q′ with p′ servers we need two rounds of computation. In the first round, we
compute in parallel the two semi-joins

S1,2(x2, x3) = S′1(x2), S2(x2, x3), Sk,k−1(xk−1, xk) = Sk−1(xk−1, xk), S′k(xk)

which can be achieved with tuple load Õ(m/p′) = Õ(m/p1−1/k), since |S′1| ≤ m and |S′k| ≤ m
(by applying Corollary 11). Since for any k ≥ 3 we have 1− 1/k ≥ 2/k, the load for the first
round will be Õ(M/p2/k). For the second round, we compute the query

q′′ = S1,2(x2, x3), S3(x3, x4), . . . , Sk−1(xk−1, xk), Sk,k−1(xk−1, xk)

which is equivalent to computing the line query Lk−2, where each relation has size at most m;
we know from Lemma 13 that we can compute such a query with tuple load Õ(m/p′1/d(k−1)/2e)
using multiple rounds. For the final step of the proof, recall that p′ = p1−1/k. Then:

k − 1
k
· 1
d(k − 1)/2e = k − 1

k
· 2
k − 1 = 2/k .

Thus, the load for the second round will be Õ(M/p2/k) as well.

P. Koutris, P. Beame, and D. Suciu 8:13

4.3.2 Even Cycles
For even length cycles, our previous argument does not work, and we have to use a different
approach. We say that a value h is δ-heavy, for some δ ∈ [0, 1], if the degree of h is at least
m/pδ in some relation. We distinguish two different cases:
1. Suppose that there exist two variables xi, xi′ such that (i− i′) is an odd number, xi is

δ-heavy, xi′ is δ′-heavy, and δ + δ′ ≤ 2/k. Observe that there are at most pδ+δ′ ≤ p2/k

such pairs of heavy values: for each such pair, we assign p′ = p1−2/k explicit servers to
compute the residual query q′ = (Ck)xi,xj in two rounds. We now consider two subcases.
If i′ = i+1, then xi, xi′ belong in the same relation Si. Then, by performing the semi-join
computations in the first round, we reduce the computation of the next rounds to the
residual query Lk−3, which requires tuple load Õ(m/p′1/d(k−2)/2e) = Õ(m/p2/k), since k is
even. Otherwise, if xi, xi′ are not in the same relation, we still do the semi-joins in the first
round, and then notice that in the subsequent rounds we need to compute the cartesian
product of two line queries, Lα, Lβ , where α + β = k − 4 and both are odd numbers.
To perform this cartesian product, we will split the p′ servers into a p(α+1)/k × p(β+1)/k

grid, and within each row/column compute the line queries. Then, the tuple load will be
Õ(m/p((α+1)/k)·(1/d(α+1)/2e)) = Õ(m/p((β+1)/k)·(1/d(β+1)/2e)) = Õ(m/p2/k).

2. Otherwise, define δeven as the largest number in [0, 1] such that for every even variable the
frequency is at most m/pδeven . Similarly define δodd. Since we do not fall in the previous
case, it must be that δeven + δodd ≥ 2/k. W.l.o.g. assume that δeven ≥ δodd. Then,
consider the HC algorithm with the following share allocation: for odd variables assign
po = pδodd , and for even variables assign pe = p2/k−δodd . Since the odd variables have
degree at most m/pδodd , there are no skewed values there. As for the even variables, their
degree is at most m/pδeven ≤ m/p2/k−δodd = m/pe. Hence, the tuple load achieved will
be Õ(m/(pope) = Õ(m/p2/k). In the case where pe is ill-defined because δodd > 2/k, we
also have that δeven > 2/k and in this case we can just apply the standard HC algorithm
that assigns a share of p1/k to every variable.

4.3.3 Other Conjunctive Queries
For the Loomis-Whitney (LW) join, the algorithmic idea is the same as the one we used for
even cycles (notice that LW3 is the triangle query C3).

I Lemma 14. The LW join LWk = S1(x2, . . . , xk), S2(x1, x3, . . . , xk), . . . , Sk(x1, . . . , xk−1)
can be computed by an MPC algorithm in 2 rounds with load Õ(M/p1−1/k).

For the clique queries, we have the following result:

I Lemma 15. The clique query Kk =
∧

1≤i<j≤k Si,j(xi, xj) can be computed by an MPC
algorithm in k − 1 rounds with load Õ(M/p2/k) for any k ≥ 3.

Finally, we show an almost optimal algorithm for queries q that contain an atom which
includes all the variables in the body of q.

I Lemma 16. Let q be a query that contains an atom R, such that vars(R) = vars(q). Then,
q can be computed by an MPC algorithm with Õ(M/p) load.

Notice that the generalized semi-join query Wk satisfies the property of the above lemma,
and hence we can compute Wk with load Õ(M/p) using two rounds (while using one round
the load is Ω(M/p1/k)).

ICDT 2016

8:14 Worst-Case Optimal Algorithms for Parallel Query Processing

5 Applications to the External Memory Model

In the external memory model, we model computation in the setting where the input data
does not fit into main memory, and the dominant cost is reading the data from the disk into
the memory and writing data on the disk.

Formally, we have an external memory (disk) of unbounded size, and an internal memory
(main memory) that consists of W words.3 The processor can only use data stored in the
internal memory to perform computation, and data can be moved between the two memories
in blocks of B consecutive words. The I/O complexity of an algorithm is the number of
input/output blocks that are moved during the algorithm, both from the internal memory to
the external one, and vice versa.

The external memory model has been recently used in the context of databases to analyze
algorithms for large datasets that do not fit in the main memory, with the main application
being triangle listing [6, 12, 18, 11]. In this setting, the input is an undirected graph, and
the goal is to list all triangles in the graph. In [18] and [11], the authors consider the
related problem of triangle enumeration, where instead of listing triangles (and hence writing
them to the external memory), for each triangle in the output we call an emit() function.
The best result comes from [11], where the authors design a deterministic algorithm that
enumerates triangles in O(|E|3/2/(

√
WB)) I/Os, where E is the number of edges in the graph.

The authors in [11] actually consider a more general class of join problems, the so-called
Loomis-Whitney enumeration. In [19], the author presents external memory algorithms for
enumerating subgraph patterns in graphs other than triangles.

The problem we consider in the context of external memory algorithms is a generalization
of triangle enumeration. Given a full conjunctive query q, we want to enumerate all possible
tuples in the output, by calling the emit() function for each tuple in the output of query q.
We assume that each tuple in the input can be represented by a single word.

5.1 Simulating an MPC Algorithm

We will show how a parallel algorithm in the tuple-based MPC model can help us construct
an external memory algorithm. The tuple-based MPC model is a restriction of the MPC
model, where only tuples from subqueries of q can be communicated, and moreover the
communication can take a very specific form: each tuple t during round k is sent to a set of
servers D(t, k), where D depends only on the data statistics that are initially available to
the algorithm. Such statistical information is the size of the relations, or information about
the heavy hitters in the data.4 All of the algorithms that we have presented so far in the
previous sections satisfy the above assumption.

The idea behind the construction is that the distribution of the data to the servers can
be used to decide which input data will be loaded into memory; hence, the load L will
correspond to the size of the internal memory W . Similarities between hash-join algorithms
used for parallel processing and the variants of hash-join used for out-of-core processing have
been already known, where the common theme is to create partitions and then process them
one at a time. Here we generalize this idea to the processing of any conjunctive query in

3 The size of the main memory is typically denoted by M , but we use W to distinguish from the relation
size in the previous sections.

4 Even if this information is not available initially to the algorithm, we can easily obtain it by performing
a single pass over the input data, which will cost O(|I|/B) I/Os.

P. Koutris, P. Beame, and D. Suciu 8:15

a rigorous way. We should also note that previous work [9] has studied the simulation of
MapReduce algorithms on a parallel external memory model.

Let A be a tuple-based MPC algorithm that computes query q over input I using r
rounds with load L(I, p). We show next how to construct an external memory algorithm B
based on the algorithm A.

Simulation. The external memory algorithm B simulates the computation of algorithm A
during each of the r rounds: round k, for k = 1, . . . , r simulates the total computation of
the p servers during round k of A. We pick a parameter p for the number of servers that we
show how to compute later. The algorithm will store tuples of the form (t, s) to denote that
tuple t resides in server s.

To initialize B, we first assign the input data to the p servers (we can do this in any
arbitrary way, as long as the data is equally distributed). More precisely, we read each tuple
t of the input relations and then produce a tuple (t, s), where s = 1, . . . , p in a round-robin
fashion, such that in the end each server is assigned |I|/B data items. To achieve this, we
load each relation in chunks of size B in the memory. After the initialization, the algorithm
B, for each round k = 1, . . . , r, performs the following steps:
1. All tuples, which will be of the form (t, s), are sorted according to the attribute s.
2. All tuples are loaded in memory in chunks of size W , in the order by which they were

sorted in the external memory. If we choose p such that r ·L(I, p) ≤W , we can fit in the
internal memory all the tuples of any server s at round k. 5 Hence, we first read into the
internal memory the tuples for server 1, then server 2, and so on. For each server s, we
replicate in the internal memory the execution of algorithm A in server s at round k.

3. For each tuple t in server s (including the ones that are newly produced), we compute
the tuples {(t, s′) | s′ ∈ D(t, k)}, and we write them into the external memory in blocks
of size B.

In other words, writing to the internal and external memory simulates the communication
step, where data is exchanged between servers. The algorithm B produces the correct result,
since by the choice of p we guarantee that we can load enough data in the memory to simulate
the local computation of A at each server. Observe that we do not need to write the final
result back to the external memory, since at the end of the last round we can just call emit()
for each tuple in the output.

Let us now identify the choice for p; recall that we must make sure that r · L(I, p) ≤W .
Hence, we must choose po such that po = minp{L(I, p) ≤W/r}. We next analyze the I/O
cost of algorithm B for this choice of po.

Analysis. The initialization I/O cost for the algorithm is |I|/B. To analyze the cost for a
given round k = 1, . . . , r, we will measure first the size of the data that will be sorted and
then loaded into memory at round k. For this, observe that at every round of algorithm
B, the total amount of data that is communicated is at most po · L(I, po). Hence, the total
amount of data that will be loaded into memory will be at most k · po ·L(I, po) ≤ poW , from
our definition of po.

For the first step that requires sorting the data, we will not use a sorting algorithm,
but instead we will partition the data into p parts, and then concatenate the parts (this is

5 The quantity L(I, p) measures the maximum amount of data received during any round. Since data is
not destroyed, over r rounds a server can receive as much as r · L(I, p) data. All of this data must fit
into the memory of size W , since the decisions of each server depend on all the data received.

ICDT 2016

8:16 Worst-Case Optimal Algorithms for Parallel Query Processing

possible only if po is smaller than the memory W , i.e. it must be po ≤W). We can do this
with a cost of O(poW/B) I/Os. The second step of loading the tuples into memory has a
cost of poW/B, since we are loading the data using chunks of size B; we can do this since
the data has been sorted according to the destination server. As for the third step of writing
the data into the external memory, observe that the total number of tuples written will be
equal to the number of tuples communicated to the servers at round k + 1, which will be at
most poL(I, po) ≤ poW/r. Hence, the I/O cost will be poW/(rB).

Summing the I/O cost of all three steps over r rounds, we obtain that the I/O cost of
the constructed algorithm B will be:

O

(
|I|
B

+
r∑

k=1

(
poW

B
+ poW

rB

))
= O

(
|I|
B

+ rpoW

B

)
We have thus proved the following theorem:

I Theorem 17. Let A be a tuple-based MPC algorithm that computes query q over input I
using r rounds with load L(I, p). For internal memory size W , let po = minp{L(I, p) ≤W/r}.
If W ≥ po, then there exists an external memory algorithm B that computes q over the same
input I with I/O cost:

O

(
|I|
B

+ rpoW

B

)
.

We can simplify the above I/O cost further in the context of computing conjunctive
queries. In all of our algorithms we used a constant number of rounds r, and the load is
typically L(I, p) ≥ |I|/p. Then, we can rewrite the I/O cost as O (poW/B).

We can apply Theorem 17 to any of the optimal multi-round algorithms we presented in
the previous sections, and obtain state-of-the-art external memory algorithms for several
classes of conjunctive queries. We show next an application for the case of query C3.

I Example 18. We presented a 2-round algorithm that computes triangles for any input
data with load (in tuples) L = Õ(m/p3/2), in the case where all relations have size m. By
applying Theorem 17, we obtain an external memory algorithm that computes triangles with
Õ(m3/2/(BW 1/2)) I/O cost for any W ≥ m2/5. Notice that this cost matches the I/O cost
for triangle computation from [18] up to polylogarithmic factors.

6 Conclusion

In this work, we present the first worst-case analysis for parallel algorithms that compute
conjunctive queries, using the MPC model as the theoretical framework for the analysis. We
also show an interesting connection with the external memory computation model, which
allows us to translate many of the techniques from the parallel setting to obtain algorithms
for conjunctive queries with (almost) optimal I/O cost.

The central remaining open question is to design worst-case optimal algorithms for
multiple rounds for any conjunctive query. We also plan to investigate further the connection
between the parallel setting and external memory setting. It is an interesting question
whether our techniques can lead to optimal external memory algorithms for any conjunctive
query, and also whether we can achieve a reverse simulation of external memory algorithms
in the MPC model.

Acknowledgements. We would like to thank Ke Yi for pointing out an error in the compu-
tation of the edge quasi-packing of the query Lk.

P. Koutris, P. Beame, and D. Suciu 8:17

References
1 Foto N. Afrati, Anish Das Sarma, Semih Salihoglu, and Jeffrey D. Ullman. Upper and

lower bounds on the cost of a map-reduce computation. CoRR, abs/1206.4377, 2012.
2 Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a map-reduce environment. In

EDBT, pages 99–110, 2010. doi:10.1145/1739041.1739056.
3 Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for relational

joins. In FOCS, pages 739–748, 2008. doi:10.1109/FOCS.2008.43.
4 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query

processing. In PODS, pages 273–284, 2013. doi:10.1145/2463664.2465224.
5 Paul Beame, Paraschos Koutris, and Dan Suciu. Skew in parallel query processing. In

PODS, pages 212–223, 2014. doi:10.1145/2594538.2594558.
6 Shumo Chu and James Cheng. Triangle listing in massive networks. TKDD, 6(4):17, 2012.

doi:10.1145/2382577.2382581.
7 Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large

clusters. In OSDI, pages 137–150, 2004.
8 Jon Feldman, S. Muthukrishnan, Anastasios Sidiropoulos, Clifford Stein, and Zoya Svitkina.

On distributing symmetric streaming computations. ACM Transactions on Algorithms,
6(4), 2010.

9 Gero Greiner and Riko Jacob. The efficiency of mapreduce in parallel external memory.
In Proceedings of the 10th Latin American International Conference on Theoretical In-
formatics, LATIN’12, pages 433–445, Berlin, Heidelberg, 2012. Springer-Verlag. doi:
10.1007/978-3-642-29344-3_37.

10 Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo, Shumo Chu, Paraschos Koutris,
Dominik Moritz, Jennifer Ortiz, Vaspol Ruamviboonsuk, Jingjing Wang, AndrewWhitaker,
Shengliang Xu, Magdalena Balazinska, Bill Howe, and Dan Suciu. Demonstration of the
Myria big data management service. In Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu,
editors, International Conference on Management of Data, SIGMOD 2014, Snowbird, UT,
USA, June 22-27, 2014, pages 881–884. ACM, 2014. doi:10.1145/2588555.2594530.

11 Xiaocheng Hu, Miao Qiao, and Yufei Tao. Join dependency testing, Loomis-Whitney join,
and triangle enumeration. In Proceedings of the 34th ACM Symposium on Principles of
Database Systems, PODS 2015, Melbourne, Victoria, Australia, May 31 – June 4, 2015,
pages 291–301, 2015. doi:10.1145/2745754.2745768.

12 Xiaocheng Hu, Yufei Tao, and Chin-Wan Chung. Massive graph triangulation. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 325–336, 2013. doi:
10.1145/2463676.2463704.

13 Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
mapreduce. In SODA, pages 938–948, 2010.

14 Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson. Distrib-
uted computation of large-scale graph problems. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA’15, pages 391–410. SIAM, 2015.

15 Paraschos Koutris and Dan Suciu. Parallel evaluation of conjunctive queries. In PODS,
pages 223–234, 2011. doi:10.1145/1989284.1989310.

16 Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt
Tolton, and Theo Vassilakis. Dremel: Interactive analysis of web-scale datasets. PVLDB,
3(1):330–339, 2010.

17 Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join al-
gorithms: [extended abstract]. In PODS, pages 37–48, 2012. doi:10.1145/2213556.
2213565.

ICDT 2016

http://dx.doi.org/10.1145/1739041.1739056
http://dx.doi.org/10.1109/FOCS.2008.43
http://dx.doi.org/10.1145/2463664.2465224
http://dx.doi.org/10.1145/2594538.2594558
http://dx.doi.org/10.1145/2382577.2382581
http://dx.doi.org/10.1007/978-3-642-29344-3_37
http://dx.doi.org/10.1007/978-3-642-29344-3_37
http://dx.doi.org/10.1145/2588555.2594530
http://dx.doi.org/10.1145/2745754.2745768
http://dx.doi.org/10.1145/2463676.2463704
http://dx.doi.org/10.1145/2463676.2463704
http://dx.doi.org/10.1145/1989284.1989310
http://dx.doi.org/10.1145/2213556.2213565
http://dx.doi.org/10.1145/2213556.2213565

8:18 Worst-Case Optimal Algorithms for Parallel Query Processing

18 Rasmus Pagh and Francesco Silvestri. The input/output complexity of triangle enumera-
tion. In PODS, pages 224–233, 2014. doi:10.1145/2594538.2594552.

19 Francesco Silvestri. Subgraph enumeration in massive graphs. CoRR, abs/1402.3444, 2014.
URL: http://arxiv.org/abs/1402.3444.

20 DavidP. Woodruff and Qin Zhang. When distributed computation is communication ex-
pensive. In Yehuda Afek, editor, Distributed Computing, volume 8205 of Lecture Notes
in Computer Science, pages 16–30. Springer Berlin Heidelberg, 2013. doi:10.1007/
978-3-642-41527-2_2.

21 M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shen-
ker, and I. Stoica. Resilient distributed datasets: a fault-tolerant abstraction for in-memory
cluster computing. In NSDI, 2012.

http://dx.doi.org/10.1145/2594538.2594552
http://arxiv.org/abs/1402.3444
http://dx.doi.org/10.1007/978-3-642-41527-2_2
http://dx.doi.org/10.1007/978-3-642-41527-2_2

	Introduction
	Background
	The MPC Model
	Conjunctive Queries
	Previous Results

	One-Round Algorithms
	An Optimal Algorithm
	Lower Bounds
	Discussion

	Multi-round Algorithms
	Multi-round Lower Bound
	Warmup: Computing Triangles in 2 Rounds
	Computing General CQs
	Odd Cycles
	Even Cycles
	Other Conjunctive Queries

	Applications to the External Memory Model
	Simulating an MPC Algorithm

	Conclusion

