8,786 research outputs found

    On the complexity of the chip-firing reachability problem

    Get PDF
    In this paper, we study the complexity of the chip-firing reachability problem. We show that for Eulerian digraphs, the reachability problem can be decided in strongly polynomial time, even if the digraph has multiple edges. We also show a special case when the reachability problem can be decided in polynomial time for general digraphs: if the target distribution is recurrent restricted to each strongly connected component. As a further positive result, we show that the chip-firing reachability problem is in co-NP for general digraphs. We also show that the chip-firing halting problem is in co-NP for Eulerian digraphs

    Powerful sets: a generalisation of binary matroids

    Full text link
    A set S⊆{0,1}ES\subseteq\{0,1\}^E of binary vectors, with positions indexed by EE, is said to be a \textit{powerful code} if, for all X⊆EX\subseteq E, the number of vectors in SS that are zero in the positions indexed by XX is a power of 2. By treating binary vectors as characteristic vectors of subsets of EE, we say that a set S⊆2ES\subseteq2^E of subsets of EE is a \textit{powerful set} if the set of characteristic vectors of sets in SS is a powerful code. Powerful sets (codes) include cocircuit spaces of binary matroids (equivalently, linear codes over F2\mathbb{F}_2), but much more besides. Our motivation is that, to each powerful set, there is an associated nonnegative-integer-valued rank function (by a construction of Farr), although it does not in general satisfy all the matroid rank axioms. In this paper we investigate the combinatorial properties of powerful sets. We prove fundamental results on special elements (loops, coloops, frames, near-frames, and stars), their associated types of single-element extensions, various ways of combining powerful sets to get new ones, and constructions of nonlinear powerful sets. We show that every powerful set is determined by its clutter of minimal nonzero members. Finally, we show that the number of powerful sets is doubly exponential, and hence that almost all powerful sets are nonlinear.Comment: 19 pages. This work was presented at the 40th Australasian Conference on Combinatorial Mathematics and Combinatorial Computing (40ACCMCC), University of Newcastle, Australia, Dec. 201

    Counting subspaces of a finite vector space

    Full text link
    In this expository article, we discuss the relation between the Gaussian binomial and multinomial coefficients and ordinary binomial and multinomial coefficients from a combinatorial viewpoint, based on expositions by Butler, Knuth and Stanley.Comment: 15 pages, 3 figures, corrected versio
    • …
    corecore