10,632 research outputs found

    Some results in extremal combinatorics

    Get PDF
    In Chapter 1 we determine the minimal density of triangles in a tripartite graph with prescribed edge densities. This extends work of Bondy, Shen, Thomassé and Thomassen characterizing those edge densities guaranteeing the existence of a triangle in a tripartite graph. We also determine those edge densities guaranteeing a copy of a triangle or C5 in a tripartite graph. In Chapter 2 we describe Razborov's flag algebra method and apply this to Erdös' jumping hypergraph problem to find the first non-trivial regions of jumps. We also use Razborov's method to prove five new sharp Turan densities, by looking at six vertex 3-graphs which are edge minimal and not 2-colourable. We extend Razborov's method to hypercubes. This allows us to significantly improve the upper bound given by Thomason and Wagner on the number of edges in a C4-free subgraph of the hypercube. We also show that the vertex Turan density of a 3-cube with a single vertex removed is precisely 3/4. In Chapter 3 we look at problems for intersecting families of sets on graphs. We give a new bound for the size of G-intersecting families on a cycle, disproving a conjecture of Johnson and Talbot. We also extend this result to cross-intersecting families and to powers of cycles. Finally in Chapter 4 we disprove a conjecture of Hurlbert and Kamat that the largest trivial intersecting family of independent r-sets from the vertex set of a tree is centred on a leaf

    Triangle-Intersecting Families of Graphs

    Full text link
    A family of graphs F is said to be triangle-intersecting if for any two graphs G,H in F, the intersection of G and H contains a triangle. A conjecture of Simonovits and Sos from 1976 states that the largest triangle-intersecting families of graphs on a fixed set of n vertices are those obtained by fixing a specific triangle and taking all graphs containing it, resulting in a family of size (1/8) 2^{n choose 2}. We prove this conjecture and some generalizations (for example, we prove that the same is true of odd-cycle-intersecting families, and we obtain best possible bounds on the size of the family under different, not necessarily uniform, measures). We also obtain stability results, showing that almost-largest triangle-intersecting families have approximately the same structure.Comment: 43 page

    Cross-intersecting non-empty uniform subfamilies of hereditary families

    Get PDF
    A set AA tt-intersects a set BB if AA and BB have at least tt common elements. A set of sets is called a family. Two families A\mathcal{A} and B\mathcal{B} are cross-tt-intersecting if each set in A\mathcal{A} tt-intersects each set in B\mathcal{B}. A family H\mathcal{H} is hereditary if for each set AA in H\mathcal{H}, all the subsets of AA are in H\mathcal{H}. The rrth level of H\mathcal{H}, denoted by H(r)\mathcal{H}^{(r)}, is the family of rr-element sets in H\mathcal{H}. A set BB in H\mathcal{H} is a base of H\mathcal{H} if for each set AA in H\mathcal{H}, BB is not a proper subset of AA. Let μ(H)\mu(\mathcal{H}) denote the size of a smallest base of H\mathcal{H}. We show that for any integers tt, rr, and ss with 1trs1 \leq t \leq r \leq s, there exists an integer c(r,s,t)c(r,s,t) such that the following holds for any hereditary family H\mathcal{H} with μ(H)c(r,s,t)\mu(\mathcal{H}) \geq c(r,s,t). If A\mathcal{A} is a non-empty subfamily of H(r)\mathcal{H}^{(r)}, B\mathcal{B} is a non-empty subfamily of H(s)\mathcal{H}^{(s)}, A\mathcal{A} and B\mathcal{B} are cross-tt-intersecting, and A+B|\mathcal{A}| + |\mathcal{B}| is maximum under the given conditions, then for some set II in H\mathcal{H} with tIrt \leq |I| \leq r, either A={AH(r) ⁣:IA}\mathcal{A} = \{A \in \mathcal{H}^{(r)} \colon I \subseteq A\} and B={BH(s) ⁣:BIt}\mathcal{B} = \{B \in \mathcal{H}^{(s)} \colon |B \cap I| \geq t\}, or r=sr = s, t<It < |I|, A={AH(r) ⁣:AIt}\mathcal{A} = \{A \in \mathcal{H}^{(r)} \colon |A \cap I| \geq t\}, and B={BH(s) ⁣:IB}\mathcal{B} = \{B \in \mathcal{H}^{(s)} \colon I \subseteq B\}. This was conjectured by the author for t=1t=1 and generalizes well-known results for the case where H\mathcal{H} is a power set.Comment: 15 pages. arXiv admin note: text overlap with arXiv:1805.0524

    Cross-intersecting families and primitivity of symmetric systems

    Get PDF
    Let XX be a finite set and p2X\mathfrak p\subseteq 2^X, the power set of XX, satisfying three conditions: (a) p\mathfrak p is an ideal in 2X2^X, that is, if ApA\in \mathfrak p and BAB\subset A, then BpB\in \mathfrak p; (b) For A2XA\in 2^X with A2|A|\geq 2, ApA\in \mathfrak p if {x,y}p\{x,y\}\in \mathfrak p for any x,yAx,y\in A with xyx\neq y; (c) {x}p\{x\}\in \mathfrak p for every xXx\in X. The pair (X,p)(X,\mathfrak p) is called a symmetric system if there is a group Γ\Gamma transitively acting on XX and preserving the ideal p\mathfrak p. A family {A1,A2,,Am}2X\{A_1,A_2,\ldots,A_m\}\subseteq 2^X is said to be a cross-p\mathfrak{p}-family of XX if {a,b}p\{a, b\}\in \mathfrak{p} for any aAia\in A_i and bAjb\in A_j with iji\neq j. We prove that if (X,p)(X,\mathfrak p) is a symmetric system and {A1,A2,,Am}2X\{A_1,A_2,\ldots,A_m\}\subseteq 2^X is a cross-p\mathfrak{p}-family of XX, then i=1mAi{Xif mXα(X,p),mα(X,p)if mXα(X,p),\sum_{i=1}^m|{A}_i|\leq\left\{ \begin{array}{cl} |X| & \hbox{if $m\leq \frac{|X|}{\alpha(X,\, \mathfrak p)}$,} \\ m\, \alpha(X,\, \mathfrak p) & \hbox{if $m\geq \frac{|X|}{\alpha{(X,\, \mathfrak p)}}$,} \end{array}\right. where α(X,p)=max{A:Ap}\alpha(X,\, \mathfrak p)=\max\{|A|:A\in\mathfrak p\}. This generalizes Hilton's theorem on cross-intersecting families of finite sets, and provides analogs for cross-tt-intersecting families of finite sets, finite vector spaces and permutations, etc. Moreover, the primitivity of symmetric systems is introduced to characterize the optimal families.Comment: 15 page
    corecore