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Abstract

In Chapter 1 we determine the minimal density of triangles in a tripartite graph

with prescribed edge densities. This extends work of Bondy, Shen, Thomassé

and Thomassen characterizing those edge densities guaranteeing the existence

of a triangle in a tripartite graph. We also determine those edge densities

guaranteeing a copy of a triangle or C5 in a tripartite graph.

In Chapter 2 we describe Razborov’s flag algebra method and apply this

to Erdős’ jumping hypergraph problem to find the first non-trivial regions of

jumps. We also use Razborov’s method to prove five new sharp Turán densities,

by looking at six vertex 3-graphs which are edge minimal and not 2-colourable.

We extend Razborov’s method to hypercubes. This allows us to significantly

improve the upper bound given by Thomason and Wagner on the number of

edges in a C4-free subgraph of the hypercube. We also show that the vertex

Turán density of a 3-cube with a single vertex removed is precisely 3/4.

In Chapter 3 we look at problems for intersecting families of sets on graphs.

We give a new bound for the size of G-intersecting families on a cycle, dis-

proving a conjecture of Johnson and Talbot. We also extend this result to

cross-intersecting families and to powers of cycles.

Finally in Chapter 4 we disprove a conjecture of Hurlbert and Kamat that

the largest trivial intersecting family of independent r-sets from the vertex set

of a tree is centred on a leaf.
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Chapter 1

The Minimal Density of

Triangles in Tripartite Graphs

1.1 Introduction

Extremal questions for triangles in graphs have a very long history. The first

such result, Mantel’s theorem [26], tells us that a graph with n vertices and

more than n2/4 edges must contain at least one triangle.

For graphs with more than n2/4 edges it is natural to pose a quantitative

question: what is the minimum number of triangles in a graph with a given

number of edges? In this direction Razborov [30] recently determined that for

a fixed ρ ∈ [0, 1], (asymptotically) the minimal possible density of triangles in

a graph with edge density ρ is

(t− 1)
(
t− 2

√
t(t− ρ(t+ 1))

)(
t+
√
t(t− ρ(t+ 1))

)2

t2(t+ 1)2
,

where t = b1/(1 − ρ)c. This density is achieved by a complete (t + 1)-partite

graph with t roughly equally sized classes and one smaller class. Razborov’s

result [30] was the cumulation of decades of contributions on this question due

to Bollobás [3], Erdős [9], Lovász and Simonovits [25], and Fisher [15].

Recently Bondy, Shen, Thomassé, and Thomassen [4] considered the very

natural question of when a tripartite graph with prescribed edge densities must

contain a triangle. (A tripartite graph is a graph G = (V,E) for which there

exists a partition of its vertices into three vertex classes such that all edges go
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between classes. The edge density between a pair of vertex classes X, Y is simply

the proportion of edges present between the two classes: |E(X, Y )|/|X||Y |.)
Bondy, Shen, Thomassé, and Thomassen [4] characterized those triples of

edge densities guaranteeing a triangle in a tripartite graph. As a special case

they showed that a tripartite graph must contain a triangle if the density of

edges between each pair of classes is greater than 1/ϕ = 0.618 . . . (this comes

from considering an optimally blown-up 5-cycle). A precise statement of their

full result can be found in the next section.

The main aim of this chapter is to prove a quantitative result which extends

the theorem of Bondy, Shen, Thomassé, and Thomassen in the same way that

Razborov’s result extends Mantel’s theorem.

The remainder of the chapter is organised as follows. Formal definitions

and the main result are given in the next section. Our main result splits into

two rather different cases and the following two sections contain their proofs.

We then determine those edge densities guaranteeing a triangle or 5-cycle in a

tripartite graph. We finish with some conjectures and open problems.

The proof of our main result relies on a computer search. The C++ source

code for this computation is included in Appendix A and can also be found in

the accompanying CD-ROM.

1.2 Definitions and results

A tripartite graph is a graph G = (V,E) for which there exists a partition of

its vertices into three independent sets. Throughout, whenever we consider a

tripartite graph we will implicitly assume that a fixed tripartition V = A∪̇B∪̇C
is given.

A weighted tripartite graph (G,w) is a tripartite graph G = (V,E) together

with a weighting w : V → [0, 1] satisfying∑
a∈A

w(a) =
∑
b∈B

w(b) =
∑
c∈C

w(c) = 1.

We will see shortly that there is a very natural way of representing tripartite

graphs as weighted tripartite graphs and vice versa. We can manipulate a

weighted tripartite graph (whilst still retaining the underlying structure) by

modifying the weights of its vertices. This will prove to be very useful, and so
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rather than work with tripartite graphs we will work with weighted tripartite

graphs instead.

For a weighted tripartite graph (G,w), the weight of an edge xy ∈ E(G) is

w(xy) = w(x)w(y). The edge densities of (G,w) are

α(G,w) =
∑

bc∈E(B,C)

w(bc), β(G,w) =
∑

ac∈E(A,C)

w(ac), γ(G,w) =
∑

ab∈E(A,B)

w(ab).

We denote the set of all weighted tripartite graphs by Tri. For α, β, γ ∈ [0, 1]

we let Tri(α, β, γ) denote the set of all weighted tripartite graphs with edge

densities α(G,w) = α, β(G,w) = β, γ(G,w) = γ.

Let (G,w) ∈ Tri. A triangle in G is a set of three vertices, a ∈ A, b ∈ B, c ∈
C, such that ab, ac, bc ∈ E(G). We denote the set of all triangles in G by T (G).

The weight of a triangle xyz ∈ T (G) is w(xyz) = w(x)w(y)w(z). The triangle

density of (G,w) ∈ Tri is

t(G,w) =
∑

abc∈T (G)

w(abc).

Note that with the obvious definitions of edge and triangle densities for sim-

ple tripartite graphs any such graph can be converted into a weighted tripartite

graph with the same edge and triangle densities by setting the vertex weights

to be 1/|A|, 1/|B|, 1/|C| for vertices in classes A,B,C respectively.

Also, any weighted tripartite graph with rational weights can be converted

into a simple tripartite graph with the same edge and triangle densities by

taking a suitable blow-up. To be precise, choose an integer n so that nw(v) is

an integer for all vertices v. Then replace each vertex of weight x with nx new

vertices which are clones of the old vertex, i.e. we join a pair of vertices in the

new graph if and only if the pair of vertices they arise from are adjacent in the

weighted graph.

We are interested in how small the triangle density of a weighted tripartite

graph with prescribed edge densities can be. Formally we wish to determine

the following function. For α, β, γ ∈ [0, 1] let

Tmin(α, β, γ) = min
(G,w)∈Tri(α,β,γ)

t(G,w).

It follows from later results that this function is well-defined (in particular
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Lemmas 1.4.1 and 1.4.11).

Bondy, Shen, Thomassé and Thomassen [4] proved the following sharp

Turán-type result. If (G,w) ∈ Tri(α, β, γ) and (α, β, γ) ∈ R, where

R = {(α, β, γ) ∈ [0, 1]3 : αβ + γ > 1, αγ + β > 1, βγ + α > 1},

then G must contain a triangle.

Theorem 1.2.1 (Bondy, Shen, Thomassé and Thomassen [4]).

Tmin(α, β, γ) = 0 ⇐⇒ (α, β, γ) ∈ [0, 1]3 \R.

In particular, Tmin(d, d, d) = 0 if and only if d ≤ 0.618 . . . (the positive root

of the quadratic x2 + x− 1 = 0).

The following simple lemma shows that Tmin(α, β, γ) gives an asymptotic

answer to the question of how many triangles a simple (unweighted) tripartite

graph with given edge densities must have.

Lemma 1.2.2.

(i) If G is a simple tripartite graph with edge densities α, β, γ then it has

triangle density at least Tmin(α, β, γ).

(ii) For rational α, β, γ, if (H,w) ∈ Tri(α, β, γ) then for all ε > 0 there is a

simple tripartite graph G with edge densities α, β, γ and triangle density

at most t(H,w) + ε.

Proof. Part (i) is immediate since any tripartite graph can be transformed into

a weighted tripartite graph by weighting vertices uniformly in each vertex class

as described above.

For part (ii) let w′ be a rational weighting of H such that if the edge densities

of (H,w′) are α′, β′, γ′ we have |α−α′|, |β−β′|, |γ−γ′|, |t(H,w)−t(H,w′)| < 1
4
ε.

We can do this since for a given H the edge and triangle densities are continuous

functions of the vertex weights. Now choose an integer n so that nw′(v) is an

integer for all vertices v, and n2|α − α′|, n2|β − β′|, n2|γ − γ′| are all integers.

Blow up H by replacing each vertex v with nw′(v) cloned vertices to form

a simple graph G′ with n vertices in each class. Finally add or remove at

most 3
4
εn2 edges from G′ to form a graph G with edge densities α, β, γ. This
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H9

Figure 1.1: The tripartite complement of the graph H9.

creates at most 3
4
εn3 new triangles and so the triangle density of G is at most

t(H,w′) + 3
4
ε < t(H,w) + ε.

Our main result (Theorem 1.2.3) determines the minimal density of triangles

in a weighted tripartite graph with prescribed edge densities.

In order to simplify diagrams we make the following definition. The tripartite

complement of a tripartite graph G is the graph obtained by deleting the edges

of G from the complete tripartite graph on the same vertex classes as G. We

will denote this by G.

Theorem 1.2.3. Let H9 be the graph whose tripartite complement is given in

Figure 1.1. For any (α, β, γ) ∈ R there exists a weighting w of H9 such that

(H9, w) ∈ Tri(α, β, γ) and t(H9, w) = Tmin(α, β, γ).

This theorem combined with Lemma 1.2.2 shows that a suitable blow-up of

H9 has asymptotically the minimum density of triangles for given edge densities.

Comparing this to Razborov’s result [30] it is quite remarkable that only the

graph H9 is needed to describe the extremal examples.

There are two distinct cases to consider in the proof of Theorem 1.2.3, de-

pending on the values of α, β, γ. Let

∆(α, β, γ) = α2 + β2 + γ2 − 2αβ − 2αγ − 2βγ + 4αβγ.

We partition R into two regions: R1 and R2 where

R1 = {(α, β, γ) ∈ R : ∆(α, β, γ) ≥ 0}

and R2 = R \R1. For R1 we have the following result.
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a1

a2b1

b2

H6

Figure 1.2: The tripartite complement of the graph H6.

H
′
7H7

Figure 1.3: The tripartite complements of the graphs H7 and H ′7.

Theorem 1.2.4. If (α, β, γ) ∈ R1 and H6 is the graph whose tripartite comple-

ment is given in Figure 1.2 then there exists a weighting w such that (H6, w) ∈
Tri(α, β, γ), and for any such w

Tmin(α, β, γ) = t(H6, w) = α + β + γ − 2.

Let (G,w) ∈ Tri(α, β, γ). If t(G,w) = Tmin(α, β, γ) then (G,w) is said to be

extremal. If there does not exist (G′, w′) ∈ Tri(α, β, γ) with t(G′, w′) = t(G,w)

and |V (G′)| < |V (G)| then (G,w) is said to be vertex minimal. The tripartite

graphs G and H with specified tripartitions are strongly-isomorphic if there is

a graph isomorphism f : G→ H such that the image of each vertex class in G

is a vertex class in H.

Theorem 1.2.5. If (α, β, γ) ∈ R2 and (G,w) ∈ Tri(α, β, γ) is extremal and

vertex minimal then G is strongly-isomorphic to H7, H
′
7, or H9 (see Figure 1.3).

Proof of Theorem 1.2.3. The graphs H6, H7 and H ′7 are induced subgraphs of
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H9 hence Theorems 1.2.4 and 1.2.5 imply Theorem 1.2.3.

We conjecture that in fact the extremal graph is always an appropriate

weighting of H7. This would also give a simple formula for Tmin(α, β, γ). See

Section 1.6 for details.

1.3 Proof of Theorem 1.2.4 (the region R1)

We will begin by proving a lower bound for the density of triangles by double

counting edges.

Lemma 1.3.1. For any α, β, γ ∈ [0, 1] and (G,w) ∈ Tri(α, β, γ) we have

t(G,w) ≥ α + β + γ − 2.

Proof. Define

1xy =

1, if xy ∈ E(G),

0, otherwise,
1xyz =

1, if xyz ∈ T (G),

0, otherwise.

Given abc ∈ A×B×C, the number of edges present between these three vertices

is at most two unless abc forms a triangle. Hence∑
abc∈A×B×C

w(abc)(1bc + 1ac + 1ab) ≤
∑

abc∈A×B×C

w(abc)(2 + 1abc). (1.1)

The LHS of (1.1) sums to α + β + γ, while the RHS is 2 + t(G,w). Therefore

t(G,w) ≥ α + β + γ − 2.

Lemma 1.3.2. If w is a weighting of H6 satisfying (H6, w) ∈ Tri(α, β, γ) then

t(H6, w) = α + β + γ − 2 = Tmin(α, β, γ).

For ease of notation the weight associated with a vertex is indicated with a

hat above the label, for example w(b1) is represented as b̂1.

Proof. Consider a general weighting of H6 with vertices as labelled in Figure

1.2. We know â2 = 1 − â1, b̂2 = 1 − b̂1 and ĉ2 = 1 − ĉ1 since the sum of the
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weights of the vertices in a class add up to one. Hence we can express the

densities in terms of only â1, b̂1, and ĉ1. The edge densities of H6 are

α = 1− ĉ1 + b̂1ĉ1, β = 1− â1 + â1ĉ1, γ = 1− b̂1 + â1b̂1.

The triangle density is given by

t(H6, w) = â1b̂1ĉ1 + (1− â1)(1− b̂1)(1− ĉ1)

= 1− â1 − b̂1 − ĉ1 + â1b̂1 + â1ĉ1 + b̂1ĉ1

= α + β + γ − 2.

By Lemma 1.3.1 we have t(H6, w) = Tmin(α, β, γ).

We now need to determine for which (α, β, γ) ∈ R a weighting w exists such

that (H6, w) ∈ Tri(α, β, γ).

Lemma 1.3.3.

(i) If (α, β, γ) ∈ R then α, β, γ > 0.

(ii) If (α, β, γ) ∈ R2 then 0 < α, β, γ < 1.

Proof. If (α, β, γ) ∈ R and α = 0 then, since αβ + γ > 1, we have γ > 1, a

contradiction. Similarly β, γ > 0.

If (α, β, γ) ∈ R2 then R2 ⊆ R implies that α, β, γ > 0. If α = 1 then

∆(α, β, γ) = ∆(1, β, γ) = (1 − β − γ)2 ≥ 0. But (α, β, γ) ∈ R2 implies that

∆(α, β, γ) < 0, a contradiction. Similarly β, γ < 1.

Lemma 1.3.4. For (α, β, γ) ∈ R there exists a weighting w of H6 such that

(H6, w) ∈ Tri(α, β, γ) if and only if (α, β, γ) ∈ R1.

Proof. If (α, β, γ) ∈ R then Lemma 1.3.3 (i) implies that α, β, γ 6= 0. First

we will prove that if (α, β, γ) ∈ R and there exists a weighting w such that

(H6, w) ∈ Tri(α, β, γ), then (α, β, γ) ∈ R1.

Let us label the vertices of H6 as in Figure 1.2. Suppose w is weighting of

H6 such that (H6, w) ∈ Tri(α, β, γ). The edge densities in terms of â1, b̂1, ĉ1 are

α = 1− ĉ1 + b̂1ĉ1, (1.2)

β = 1− â1 + â1ĉ1, (1.3)

γ = 1− b̂1 + â1b̂1. (1.4)
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Case 1: One of α, β, γ equals 1.

By Lemma 1.3.3 (ii) (α, β, γ) /∈ R2. Hence (α, β, γ) ∈ R implies (α, β, γ) ∈ R1.

Case 2: α, β, γ 6= 1.

Since α, β, γ 6= 1 we have â1, b̂1, ĉ1 6= 0, 1. Rearranging (1.4) and (1.3) we can

write b̂1 and ĉ1 in terms of â1,

b̂1 =
1− γ
1− â1

, (1.5)

ĉ1 =
â1 + β − 1

â1

. (1.6)

Substituting into (1.2) and simplifying gives

αâ2
1 + (−α + β − γ)â1 + γ − βγ = 0.

Hence

â1 =
α− β + γ ±

√
∆(α, β, γ)

2α
, (1.7)

substituting back into (1.5) and (1.6) gives

b̂1 =
α + β − γ ±

√
∆(α, β, γ)

2β
, (1.8)

ĉ1 =
−α + β + γ ±

√
∆(α, β, γ)

2γ
. (1.9)

By the definition of a weighting we have â1, b̂1, ĉ1 ∈ R, hence ∆(α, β, γ) ≥ 0,

and so (α, β, γ) ∈ R1.

Next we will show that if (α, β, γ) ∈ R1 then there exists a weighting w such

that (H6, w) ∈ Tri(α, β, γ).

Case 1: One of α, β, γ equals 1.

Without loss of generality suppose α = 1. Since (1, β, γ) ∈ R1 ⊆ R we have

β + γ > 1. It is easy to check that â1 = γ, b̂1 = 1, ĉ1 = (β + γ − 1)/γ satisfy

(1.2),(1.3),(1.4) and â1, b̂1, ĉ1 ∈ [0, 1] when β + γ > 1. This is enough to define

a weighting w of H6.

Case 2: α, β, γ 6= 1.

Since ∆(α, β, γ) ≥ 0, we may define â1, b̂1, ĉ1 ∈ R by (1.7), (1.8), (1.9), taking

the positive square root in each case. Due to the way â1, b̂1, ĉ1 were constructed
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they satisfy (1.2), (1.3), (1.4). Hence if â1, b̂1, ĉ1 form a weighting w we will

have (H6, w) ∈ Tri(α, β, γ). We need only prove â1, b̂1, ĉ1 ∈ (0, 1).

We will prove â1 ∈ (0, 1), the proofs of b̂1, ĉ1 ∈ (0, 1) follow similarly. If

0 < α−β+γ then 0 < â1 because â1 is the positive square root version of (1.7).

Now (α, β, γ) ∈ R implies 0 < αβ+γ−1 < α+γ−β, and consequently 0 < â1.

By (1.7) if
√

∆(α, β, γ) < α + β − γ then â1 < 1. Again (α, β, γ) ∈ R implies

that 0 < αγ+β−1 < α+β−γ. Hence if we can show ∆(α, β, γ) < (α+β−γ)2

we will be done. Expanding and simplifying yields 0 < 4αβ(1−γ) which is true

because α, β, γ ∈ (0, 1).

Proof of Theorem 1.2.4. The result follows immediately from Lemma 1.3.2 and

1.3.4.

1.4 Proof of Theorem 1.2.5 (the region R2)

We will begin by introducing a new type of graph in Section 1.4.1 which will

allow us to develop a series of conditions that extremal vertex minimal examples

must satisfy. In Section 1.4.2 we outline an algorithm that allows us to utilize

the results of Section 1.4.1 to search for the extremal vertex minimal graphs

in a finite time. This algorithm produces fourteen possible graphs. In Section

1.4.3 we eliminate those not strongly-isomorphic to H7, H
′
7 and H9 by analysing

each of them in turn.

1.4.1 Properties

Our proof strategy for Theorem 1.2.5 is to establish various properties any

extremal and vertex minimal weighted tripartite graph must satisfy. To prove

these properties we introduce a new type of tripartite graph.

A doubly-weighted tripartite graph (G,w, p) is a weighted tripartite graph

(G,w) ∈ Tri together with a function p : E(G) → (0, 1]. We denote the set

of all doubly-weighted tripartite graphs by DTri. If (G,w, p) ∈ DTri then the

weight of an edge xy ∈ E(G) is defined to be

λ(xy) = w(xy)p(xy).
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yx
x0

x1 y

Figure 1.4: An example of (G,w, p) and Split(G,w, p, x, y). Partial edges are
represented by dotted lines, the solid lines are edges which p maps to 1.

The edge density between a pair of vertex classes X and Y is∑
xy∈E(X,Y )

λ(xy).

The triangle density is defined as

t(G,w, p) =
∑

abc∈T (G)

p(ab)p(ac)p(bc)w(abc).

Any (G,w) ∈ Tri may be converted into a doubly-weighted tripartite graph

(G,w, p) with the same triangle and edge densities by adding the function p :

E(G) → (0, 1], p(e) = 1 for all e ∈ E(G). Our next result allows us to do the

reverse and convert a doubly-weighted tripartite graph into a weighted tripartite

graph, leaving triangle and edge densities unchanged.

Lemma 1.4.1. Given (G,w, p) ∈ DTri there exists (G′, w′) ∈ Tri with the

same triangle and edge densities.

For (G,w, p) ∈ DTri we will say that e ∈ E(G) is a partial edge if p(e) < 1.

To prove Lemma 1.4.1 we need a process to eliminate partial edges without

affecting any of the densities.

For a graph G and vertex v ∈ V (G) let ΓG(v) denote the neighbourhood

of v in G. When no confusion can arise we write this simply as Γ(v). Given

a tripartite graph G with a vertex class X and v ∈ V (G) we write ΓGX(v) =

ΓG(v) ∩X. Again when no confusion can arise we write this simply as ΓX(v).

Algorithm 1.4.2 (Split). The algorithm Split takes as input (G,w, p) ∈ DTri
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and an ordered pair of vertices (x, y), such that xy is a partial edge. Its output,

Split(G,w, p, x, y), is a doubly-weighted tripartite graph, which no longer con-

tains the partial edge xy. If (G′, w′, p′) = Split(G,w, p, x, y) then G′, w′, p′ are

formed as follows:

• Construct G′ from G by replacing the vertex x by two new vertices x0 and

x1 that lie in the same vertex class as x. Add edges from x0, x1 so that

ΓG
′
(x0) = ΓG(x) \ {y} and ΓG

′
(x1) = ΓG(x).

• Set w′(x0) = w(x)(1− p(xy)) and w′(x1) = w(x)p(xy). Let w′(v) = w(v)

for all v ∈ V (G) \ {x}.

• Set p′(x0v) = p′(x1v) = p(xv) for all v ∈ ΓG(x) \ {y}, and p′(x1y) = 1.

Let p′(uv) = p(uv) for all uv ∈ E(G) such that u, v 6= x.

Note that in Split(G,w, p, y, x) (the result of applying Split to (G,w, p) and

(y, x)) the vertex y would have been “split” into two new vertices rather than

x. It also does not contain the partial edge xy. So if we wish to remove the

partial edge xy we can choose between Split(G,w, p, x, y) and Split(G,w, p, y, x).

Figure 1.4 shows an example application of Split with “before” and “after”

pictures of (G,w, p) and Split(G,w, p, x, y).

Lemma 1.4.3. For any (G,w, p) ∈ DTri and xy a partial edge, (G′, w′, p′) =

Split(G,w, p, x, y) has the same triangle and edge densities as (G,w, p).

Proof. Without loss of generality let us assume x ∈ A and y ∈ B. We will

prove the result by calculating the difference in densities between (G′, w′, p′)

and (G,w, p) and showing them to be zero. The change in the edge density

between classes A and B is

w(y)(w′(x1)p′(x1y)− w(x)p(xy))+∑
v∈ΓGB(x)\{y}

w(v)(w′(x0)p′(x0v) + w′(x1)p′(x1v)− w(x)p(xv))

which is zero. Similarly the change in density between classes A and C is zero.

There is no change in the density between classes B and C since the algorithm

Split leaves this part of the graph untouched. The change in the triangle density
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is

∑
xuv∈T (G),u∈B\{y},v∈C

(
w′(x0) + w′(x1)− w(x)

)
w(u)w(v)p(xu)p(xv)p(uv)+

∑
xyv∈T (G),v∈C

(
w′(x1)p′(x1y)− w(x)p(xy)

)
w(y)w(v)p(xv)p(yv),

which is zero, hence the triangle and edge densities do not change.

Proof of Lemma 1.4.1. Given (G,w, p) ∈ DTri, if p(e) = 1 for all e ∈ E(G)

then the weighted tripartite graph (G,w) will have the same densities as the

doubly-weighted tripartite graph.

Suppose (G,w, p) contains a partial edge av, with a ∈ A. We can remove

this partial edge by replacing (G,w, p) by Split(G,w, p, a, v). Unfortunately

this may introduce new partial edges. However, we can show that by repeated

applications of Split we will eventually remove all partial edges. Consider

Z(G,w, p) =
∑
v∈A

3dz(v),

where

dz(v) = |{u ∈ V (G) : uv ∈ E(G), p(uv) 6= 1}|.

If (G′, w′, p′) = Split(G,w, p, a, v) then Z(G′, w′, p′) < Z(G,w, p). This is be-

cause Split replaces vertex a with the vertices a0 and a1, and so Z changes

by

3dz(a0) + 3dz(a1) − 3dz(a) = 3dz(a)−1 + 3dz(a)−1 − 3dz(a)

= −3dz(a)−1.

Since Z is integral and is bounded below (by zero for instance), repeatedly

applying Split will eventually remove all partial edges incident with A. Note

that doing this will not have created any new partial edges between classes B

and C.

We can repeat this process on the partial edges leaving B, to get rid of the

remaining partial edges. Let us call the resulting doubly-weighted tripartite

graph (G′′, w′′, p′′). Since we created (G′′, w′′, p′′) only by applying Split, by

Lemma 1.4.3, (G,w, p) and (G′′, w′′, p′′) must have the same edge and triangle
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densities. Since (G′′, w′′, p′′) has no partial edges, p′′(e) = 1 for all e ∈ E(G′′),

consequently (G′′, w′′) has the same edge and triangle densities as (G′′, w′′, p′′)

and therefore (G,w, p).

Since we can convert easily between weighted and doubly-weighted tripartite

graphs, it is useful to know when there exist doubly-weighted tripartite graphs

with the same edge densities but with smaller triangle densities. Let (G,w, p)

be a doubly-weighted tripartite graph. By carefully modifying p we can adjust

the weights of edges whilst not affecting the edge densities and potentially de-

creasing the triangle density. Our next result lists a series of conditions under

which this could occur.

Let G be a tripartite graph with vertex classes A,B,C. For a ∈ A, b ∈ B
define

Cab = {c ∈ C : ac, bc ∈ E(G)}.

Lemma 1.4.4. If (G,w, p) ∈ DTri satisfies conditions (i) − (iv) below, then

there exists (G′, w, p′) ∈ DTri with the same edge densities as (G,w, p) but

t(G′, w, p′) < t(G,w, p).

(i) w(v) > 0 for all v ∈ V (G),

(ii) p(e) = 1 for all e ∈ E(A,C) ∪ E(B,C),

(iii) there exist, not necessarily distinct, vertices a0, a1 ∈ A, b0, b1 ∈ B such

that a1b1 ∈ E(G) and either a0b0 /∈ E(G) or p(a0b0) < 1,

(iv)
∑

c∈Ca0b0

w(c) <
∑

c∈Ca1b1

w(c).

Corollary 1.4.5. Let (G,w) ∈ Tri. If there exist, not necessarily distinct,

vertices a0, a1 ∈ A, b0, b1 ∈ B such that a0b0 /∈ E(G), a1b1 ∈ E(G) and Ca0b0 is

a proper subset of Ca1b1 then (G,w) is either not extremal or not vertex minimal.

Proof of Corollary 1.4.5. We will prove that if (G,w) is vertex minimal then it

is not extremal by applying Lemma 1.4.4.

Let (G,w) be vertex minimal, so w(v) > 0 for all v ∈ V (G). We can add

the function p which maps all edges of G to 1 to create (G,w, p) ∈ DTri. Now

(G,w, p) has the same triangle and edge densities as (G,w). By Lemma 1.4.1

it is enough to show that there exists (G′, w′, p′) ∈ DTri with the same edge

densities as (G,w, p) but a smaller density of triangles. Note that conditions
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(i) − (iii) in the statement of Lemma 1.4.4 hold for (G,w, p). Thus Lemma

1.4.4 will provide such a (G′, w′, p′) if we can show that∑
c∈Ca0b0

w(c) <
∑

c∈Ca1b1

w(c).

Let u ∈ Ca1b1 \ Ca0b0 . Since (G,w) is vertex minimal w(u) > 0. Hence∑
c∈Ca1b1

w(c)−
∑

c∈Ca0b0

w(c) =
∑

c∈Ca1b1\Ca0b0

w(c) ≥ w(u) > 0.

In which case all the conditions of Lemma 1.4.4 are satisfied, and (G,w) is not

extremal.

Proof of Lemma 1.4.4. If a0b0 /∈ E(G) let G′ be the graph produced from G by

adding the edge a0b0. If a0b0 ∈ E(G) then let G′ = G. Define p′ : E(G′)→ (0, 1]

by p′(e) = p(e) for e ∈ E(G′) \ {a0b0, a1b1} and

p′(a0b0) =


δ

w(a0)w(b0)
, if a0b0 /∈ E(G),

p(a0b0) +
δ

w(a0)w(b0)
, if a0b0 ∈ E(G),

p′(a1b1) = p(a1b1)− δ

w(a1)w(b1)
,

where δ > 0 is chosen sufficiently small so that p′(a0b0), p′(a1b1) ∈ (0, 1).

The weights and edges have not changed between classes A,C and B,C.

Consequently the corresponding edge densities will be the same in (G,w, p) and

(G′, w, p′). However, the edge density between class A and B, and the triangle

densities may have changed. The difference in the A,B edge density between

(G′, w, p′) and (G,w, p) is

w(a0)w(b0)
δ

w(a0)w(b0)
− w(a1)w(b1)

δ

w(a1)w(b1)
= 0.

The change in triangle density is

∑
a0b0c∈T (G′)

w(a0)w(b0)w(c)
δ

w(a0)w(b0)
−

∑
a1b1c∈T (G′)

w(a1)w(b1)w(c)
δ

w(a1)w(b1)
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Figure 1.5: The tripartite complement of the graph H7.

which simplifies to

δ

 ∑
a0b0c∈T (G′)

w(c)−
∑

a1b1c∈T (G′)

w(c)

 < 0.

Where the final inequality follows from condition (iv).

Hence the density of triangles in (G′, w, p′) is smaller than that in (G,w, p),

but the edge densities are the same in both.

Lemma 1.4.6. Consider the graph H7 whose tripartite complement is given in

Figure 1.5. If (α, β, γ) ∈ R2 then there exists a weighting w such that (H7, w) ∈
Tri(α, β, γ) and t(H7, w) = 2

√
αβ(1− γ) + 2γ − 2. Furthermore t(H7, w) ≤

t(H7, w
′) for all weightings w′, such that (H7, w

′) ∈ Tri(α, β, γ).

Proof. If (α, β, γ) ∈ R2 then, by Lemma 1.3.3 (ii), we know that 0 < α, β, γ < 1.

Consider a general weighting of H7, with vertices labelled as in Figure 1.5. If

such a weighting of H7 has edge densities α, β, γ then α, β, γ < 1 implies that

â1 6= 0, 1, γ. Now given α, β, γ and â1 6= 0, 1, γ we have enough information to

deduce the rest of the weights of the vertices. (Note that this may not be an

actual weighting since some of these values may lie outside of [0, 1].)

â2 = 1− â1, b̂1 =
1− γ
1− â1

, b̂2 =
γ − â1

1− â1

,

ĉ1 = 1− 1− β
â1

, ĉ3 = 1− (1− α)(1− â1)

γ − â1

,

ĉ2 =
1− β
â1

+
(1− α)(1− â1)

γ − â1

− 1,
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which have been deduced from

1 = â1 + â2, 1− γ = â2b̂1, 1 = b̂1 + b̂2,

1− β = (1− ĉ1)â1, 1− α = (1− ĉ3)b̂2, 1 = ĉ1 + ĉ2 + ĉ3,

respectively. There are two triangles in H7, with weights â1b̂1ĉ1 and â2b̂2ĉ3,

hence the triangle density is

â1

(
1− γ
1− â1

)(
1− 1− β

â1

)
+ (1− â1)

(
γ − â1

1− â1

)(
1− (1− α)(1− â1)

γ − â1

)
which simplifies to

2γ − 2 +
β(1− γ)

1− â1

+ α(1− â1).

This expression is minimized when 1 − â1 =
√
β(1− γ)/α, and consequently

we obtain the desired triangle density of 2
√
αβ(1− γ) + 2γ − 2. We now must

show that the vertex weights implied by â1 = 1 −
√
β(1− γ)/α all lie in [0, 1]

and that â1 6= γ, 0, 1. Since the sum of the weights in each class equals 1, in

order to show that all weights lie in [0, 1] it is sufficient to show that they are

all non-negative.

If â1 = γ then 1− γ =
√
β(1− γ)/α, which rearranges to αγ + β − α = 0.

However, αγ + β − α > αγ + β − 1 > 0 (as (α, β, γ) ∈ R2 ⊆ R), hence â1 6= γ.

1 − â1 is clearly positive, proving that 0 < â2 and â1 6= 1. Showing 0 < â1 is

equivalent to proving
√
β(1− γ)/α < 1 which is true if 0 < βγ+α−β, and this

holds because βγ+α−β > βγ+α−1 > 0. Since b̂2 equals 1−
√
α(1− γ)/β, a

similar argument shows that b̂1, b̂2 > 0. It is also straightforward to show that

ĉ1, ĉ3 > 0, but showing ĉ2 > 0 requires more work . Using ĉ1 + ĉ2 + ĉ3 = 1,

ĉ1 = 1− (1− β)/â1, and ĉ3 = 1− (1− α)/b̂2 we obtain

ĉ2 = −1 +
(1− β)b̂2 + (1− α)â1

â1b̂2

.

Hence ĉ2 > 0 if and only if

â1b̂2 < (1− β)b̂2 + (1− α)â1.
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Substituting â1 = 1−
√
β(1− γ)/α and b̂2 = 1−

√
α(1− γ)/β yields

α + β − γ < 2
√
αβ(1− γ).

Now α + β − γ > αγ + β − 1 > 0, hence 0 < ĉ2 if and only if (α + β − γ)2 <

4αβ(1 − γ). Collecting all the terms onto the left hand side shows that we

require ∆(α, β, γ) < 0, which we have from the fact that (α, β, γ) ∈ R2.

Lemma 1.4.7. For any (α, β, γ) ∈ R2,

Tmin(α, β, γ) < min{αβ + γ − 1, αγ + β − 1, βγ + α− 1}.

Proof of Lemma 1.4.7. Without loss of generality let us assume that

αβ + γ − 1 = min{αβ + γ − 1, αγ + β − 1, βγ + α− 1}.

By Lemma 1.4.6 we know that for any (α, β, γ) ∈ R2 there exists a weighting w

such that (H7, w) ∈ Tri(α, β, γ) and t(H7, w) = 2
√
αβ(1− γ) + 2γ − 2. Hence

Tmin(α, β, γ) ≤ 2
√
αβ(1− γ) + 2γ − 2. If αβ + γ − 1 ≤ 2

√
αβ(1− γ) + 2γ − 2

then

αβ + 1− γ ≤ 2
√
αβ(1− γ).

Squaring and rearranging yields

(αβ + γ − 1)2 ≤ 0.

Since (α, β, γ) ∈ R2 ⊆ R we know αβ + γ − 1 > 0 holds true, hence we have a

contradiction.

Lemma 1.4.8. Let (α, β, γ) ∈ R2. If (G,w) ∈ Tri(α, β, γ) is extremal, then

|A|, |B|, |C| ≥ 2.

To prove Lemma 1.4.8 we will require the following algorithm.

Algorithm 1.4.9 (Merge). The algorithm Merge takes as input (G,w, p) ∈
DTri, and two distinct vertices x1, x2 ∈ X, where X is one of the vertex classes

of G. The vertices x1, x2, must satisfy, for some vertex class Y 6= X, ΓY (x1) =

ΓY (x2), w(x1) + w(x2) > 0 and p(x1y) = p(x2y) = 1 for all y ∈ ΓY (x1). The

output of the algorithm is represented by Merge(G,w, p, x1, x2) and is a doubly-

weighted tripartite graph in which x1, x2 have been replaced by a single new
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Figure 1.6: An example of (G,w, p) and Merge(G,w, p, x1, x2). Partial edges
are represented by dotted lines, the solid lines are edges which p maps to 1

vertex: x. For convenience let us write (G′, w′, p′) = Merge(G,w, p, x1, x2). Now

G′, w′, p′ are formed as follows:

• Construct G′ from G by replacing the vertices x1, x2 by a new vertex x in

X. Add edges from x so that ΓG
′
(x) = ΓG(x1) ∪ ΓG(x2).

• Set w′(x) = w(x1) + w(x2). Let w′(v) = w(v) for all v ∈ V (G′) \ {x}.

• For u, v ∈ V (G′)\{x} and uv ∈ E(G′), let p′(uv) = p(uv). For xv ∈ E(G′)

set

p′(xv) =


w(x1)p(x1v)/w′(x), if x1v ∈ E(G), x2v /∈ E(G),

w(x2)p(x2v)/w′(x), if x1v /∈ E(G), x2v ∈ E(G),

(w(x1)p(x1v) + w(x2)p(x2v))/w′(x), if x1v ∈ E(G), x2v ∈ E(G).

Observe that for y ∈ Y we have xy ∈ E(G′) if and only if x1y, x2y ∈ E(G) and

in this case p(xy) = 1. It is easy to check that the edge and triangle densities

of (G,w, p) and (G′, w′, p′) are the same.

Proof of Lemma 1.4.8. Suppose (G,w) is extremal and without loss of general-

ity vertex class C = {c} contains exactly one vertex. We can assume w(v) 6= 0

for all v ∈ V (G), as any vertices with weight zero can be removed without af-

fecting any of the densities. Create a doubly-weighted tripartite graph (G,w, p)

with the same densities as (G,w) by setting p(e) = 1 for all e ∈ E(G). We will

show that the triangle density of (G,w, p) is at least αβ+γ−1 and consequently,

by Lemma 1.4.7, (G,w) is not extremal.
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Figure 1.7: A graph with |C| = 1 after merging vertices in A and B. The dotted
lines represent edges that may or may not be in the graph.

Since (α, β, γ) ∈ R2, by Lemma 1.3.3 (ii) we have β 6= 0, 1. Moreover since

C = {c} we know that there must exist a vertex in A whose neighbourhood

in C is empty and another whose neighbourhood in C is {c}. We can replace

all vertices a ∈ A satisfying ΓC(a) = ∅ by a single vertex a0 via repeated

applications of the Merge algorithm on pairs of such vertices. Similarly we can

replace all vertices with ΓC(a) = {c} by a single vertex a1. Having done this we

obtain a doubly-weighted graph in which A = {a0, a1}, a1c is an edge, and a0c

is a non-edge. Note the edges and weights between B and C remain unchanged

but we may have modified the edges and weights between A and B.

By a similar argument we can reduce B to two vertices b0, b1, with b1c an

edge and b0c a non-edge. Let us call this doubly weighted graph (G′, w′, p′), and

note it has the same densities as (G,w, p) and hence (G,w). By construction

we have

a0c, b0c /∈ E(G′), a1c, b1c ∈ E(G′), p′(a1c) = p′(b1c) = 1,

see Figure 1.7.

We now have enough information to determine the weights of all of the

vertices:

w′(c) = 1, w′(a1) = β, w′(a0) = 1− β, w′(b1) = α, w′(b0) = 1− α.

The only information we are lacking about (G′, w′, p′) is which edges are present

in E(A,B) and what their weights are. However, since (α, β, γ) ∈ R, Theorem

1.2.1 implies that G′ contains a triangle. Hence a1b1 ∈ E(A,B). Since Ca1b1 =
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{c} and Ca0b0 = Ca0b1 = Ca1b0 = ∅, Lemma 1.4.4 tells us that (G,w) will not be

extremal unless a0b0, a0b1, a1b0 are all edges which p′ maps to 1.

Now, a1b1c is the only triangle in the doubly-weighted tripartite graph, hence

the triangle density is w′(a1)w′(b1)p′(a1b1) = λ(a1b1) (as w′(c), p′(a1c), p
′(b1c)

are all 1). By the definition of edge density in a doubly-weighted tripartite

graph, we have

γ = λ(a0b0) + λ(a0b1) + λ(a1b0) + λ(a1b1)

= (1− α)(1− β) + α(1− β) + (1− α)β + t(G′, w′, p′)

= 1− αβ + t(G′, w′, p′)

Hence the triangle density is αβ + γ − 1, which by Lemma 1.4.7 and Lemma

1.4.1 implies that (G,w) is not extremal.

Lemma 1.4.10. If (α, β, γ) ∈ R2, (G,w) ∈ Tri(α, β, γ) and for all a1, a2 ∈ A,

ΓC(a1) = ΓC(a2) then (G,w) is not extremal.

Proof. If there exist any vertices with weight zero, we can remove them without

affecting the densities. Convert the resulting weighted tripartite graph into

a doubly-weighted tripartite graph and reduce A down to a single vertex, by

repeated applications of Merge on the vertices in A. Any partial edges that

appear will lie in E(A,B).

Now repeatedly apply Split choosing to replace vertices in B rather than

A, until no more partial edges remain. Consequently we have modified the

weighted graph into a new weighted graph with the same densities and now

|A| = 1. By Lemma 1.4.8 we know this is not extremal and hence (G,w) was

not extremal.

Our next lemma is an adaptation of a convexity argument by Bondy, Shen,

Thomassé and Thomassen (see proof of Theorem 3 [4]). By exploiting the

freedom we have to change the weights of vertices we can reduce the number

of vertices in each class to at most three. Consequently there are only a finite

number of graphs we need to consider.

Lemma 1.4.11. If (G,w) ∈ Tri is extremal and vertex minimal, then |A|, |B|,
|C| ≤ 3

Again we introduce an algorithm to prove this lemma.

27



Algorithm 1.4.12 (Reduce). The algorithm Reduce takes as input (G,w) ∈
Tri and a vertex class X of G, satisfying |X| > 3. Its output, represented

by Reduce(G,w,X), is a weighted tripartite graph, which has the same edge

densities as (G,w), but with |X| ≤ 3, and triangle density at most that of

(G,w).

To help explain the algorithm we will suppose X = A, (the other choices of

X work similarly). For each vertex ai ∈ A let

βi =
∑

c∈ΓC(ai)

w(c), γi =
∑

b∈ΓB(ai)

w(b), ti =
∑

bc∈E(B,C),aibc∈T (G)

w(bc).

By definition

β =

|A|∑
i=1

w(ai)βi, γ =

|A|∑
i=1

w(ai)γi, t(G,w) =

|A|∑
i=1

w(ai)ti.

Consider the convex hull

P =


|A|∑
i=1

xi(βi, γi, ti) :

|A|∑
i=1

xi = 1 and xi ≥ 0

 .

Setting xi = w(ai) shows that (β, γ, t(G,w)) lies in P . By varying the values of

the xi we can decrease the value of t(G,w) to t′ such that (β, γ, t′) lies on the

boundary of P . Moreover, by triangulating the facet of P containing (β, γ, t′),

we can express (β, γ, t′) as a convex combination of at most three elements of

{(βi, γi, ti) : 1 ≤ i ≤ |A|}. Consequently we can write

(β, γ, t′) =

|A|∑
i=1

xi(βi, γi, ti)

where
∑
xi = 1 and at most three of the xi are positive, the rest are zero. Now

define a new weighting w′ for G by w′(ai) = xi, w
′(v) = w(v) for v ∈ V (G) \A.

The weighted tripartite graph (G,w′) has the same edge densities as (G,w) and

a new triangle density t′ satisfying t′ ≤ t(G,w). Furthermore we can remove the

zero weighted vertices from A so that |A| ≤ 3 and the densities are unchanged.

Proof of Lemma 1.4.11. Suppose (G,w) is extremal and vertex minimal with,

without loss of generality, |A| > 3. Now, using Algorithm 1.4.12, Reduce(G,w,A)
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has the same densities as (G,w) (since (G,w) is extremal), but it has fewer ver-

tices, contradicting the vertex minimality of (G,w).

Lemma 1.4.13. Let (G,w) be a weighted tripartite graph. If there exist distinct

vertices a1, a2 ∈ A with ΓC(a1) = ΓC(a2) and |B| = 3, then (G,w) is not

extremal or not vertex minimal.

Proof. Convert (G,w) into a doubly-weighted tripartite graph and replace a1, a2

with a vertex a by applying Merge (we may assume w(a1)+w(a2) > 0 by vertex

minimality of (G,w)). Now A has reduced in size by one. If there are partial

edges they will lie between classes A and B. Use the Split algorithm to remove

them, choosing to replace vertices in B rather than A. Now convert the doubly-

weighted graph back into a weighted graph. This weighted graph will have the

same densities as (G,w), A has one less vertex, and |B| ≥ 3. If |B| = 3 then this

weighted graph is of smaller order than (G,w). If |B| > 3 we can use Reduce

to modify the weights of vertices in B, such that at most three of them have a

non-zero weight. Simply remove all vertices with zero weight and the resulting

graph will be of smaller order than G, contradicting vertex minimality.

Lemma 1.4.14. Consider a weighted graph (G,w). If there exist distinct ver-

tices a1, a2 ∈ A with Γ(a1) = Γ(a2) then (G,w) is not vertex minimal.

Proof. Remove vertex a2 and increase the weight of a1 by w(a2). The resulting

weighted graph has the same densities as (G,w).

Lemma 1.4.15. Given a tripartite graph G with |A| = 3, not necessarily dis-

tinct, vertices a0, a1 ∈ A, b0, b1 ∈ B such that a0b0 /∈ E(G), a1b1 ∈ E(G) and

Ca0b0 = Ca1b1, construct two graphs G1, G2 as follows:

• Let G′1 = G − a1b1. Construct G1 from G′1 by adding a new vertex a2 to

A and adding edges incident to a2 so that ΓG1(a2) = ΓG
′
1(a0) ∪ {b0}.

• Let G′2 = G + a0b0. Construct G2 from G′2 by adding a new vertex a2 to

A and adding edges incident to a2 so that ΓG2(a2) = ΓG
′
2(a1) \ {b1}.

Note that in G1 and G2 we have |A| = 4. Let H denote the family of eight

graphs constructed from G1 or G2 by deleting a single vertex from A.

If (G,w) is extremal and vertex minimal then there exists H ∈ H and a

weighting w′ of H, such that (H,w′) has the same edge densities as (G,w) and

is also extremal and vertex minimal.
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Proof. Our proof will involve first showing that there exists a weighting w′′ of

G1, G2 such that either (G1, w
′′) or (G2, w

′′) have the same densities as (G,w).

Form a doubly-weighted graph (G,w, p) with p(e) = 1 for all e ∈ E(G).

Since Ca0b0 = Ca1b1 , if we add the edge a0b0 to G we can move weight from

edge a1b1 to a0b0, by modifying p(a1b1) and p(a0b0), whilst keeping the edge

and triangle densities constant. If we move as much weight as we can from a1b1

to a0b0, one of two things must happen. Either we manage to make p(a0b0) = 1

before p(a1b1) reaches zero, or p(a1b1) reaches zero (so we remove edge a1b1)

and p(a0b0) ≤ 1. In either case we have at most one partial edge either a1b1 or

a0b0. We can remove the partial edge by an application of the Split algorithm,

introducing an extra vertex into class A. The two possible resulting graphs are

G2, G1 respectively. Hence there exists a weighting w′′ such that either (G1, w
′′)

or (G2, w
′′) have the same densities as (G,w).

Without loss of generality let us assume (G1, w
′′) has the same densities

as (G,w). Since |A| = 4 for G1, applying the Reduce algorithm will remove

at least one vertex from A to create a doubly-weighted graph, say (H,w′),

with the same edge densities and possibly a smaller triangle density. However,

since t(G,w) = t(G1, w
′′) ≥ t(H,w′) and (G,w) is extremal, we must have

t(G,w) = t(H,w′), implying (H,w′) is extremal. We can also conclude, by the

vertex minimality of (G,w), that H is formed from G1 by removing exactly one

vertex from A.

1.4.2 Search for extremal examples

We have now developed a number of important conditions that any vertex

minimal extremal examples must satisfy. These will, eventually, allow us to

conduct an exhaustive search for such graphs (with the aid of a computer).

This will then leave us with a small number of possible extremal graphs which

we will deal with by hand.

Recall that the tripartite graphs G and H (as always with specified triparti-

tions) are strongly-isomorphic if there is a graph isomorphism f : G→ H such

that the image of each vertex class in G is a vertex class in H.

It turns out that if we can eliminate graphs that are strongly-isomorphic to

two particular examples: F7 and F9 (see Figure 1.8), then our computer search

will be able to eliminate many more possible extremal vertex minimal examples,

and thus reduce the amount of work we will finally need to do by hand.
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F 9F 7

Figure 1.8: The tripartite complements of the graphs F7 and F9.

C
c2c1 c3

B Aa2

a1

a3b1

b2

Figure 1.9: Canonical labelling of vertices and vertex classes.

For ease of notation we will henceforth implicitly label the vertices and

vertex classes of all figures as in Figure 1.9. Indices of vertices start at one and

increase clockwise. Recall that the weight associated with a vertex is indicated

with a hat above the label, for example w(b1) is represented as b̂1.

Lemma 1.4.16. If (α, β, γ) ∈ R2 then for all weightings w such that (F7, w) ∈
Tri(α, β, γ), (F7, w) is either not extremal or not vertex minimal.

To prove Lemma 1.4.16, we first need to prove the following result about

the graph F6 given in Figure 1.10.

Lemma 1.4.17. For any α, β, γ ∈ [0, 1] and weighting w satisfying (F6, w) ∈
Tri(α, β, γ) we have

t(F6, w) ≥ min{αβ + γ − 1, αγ + β − 1, βγ + α− 1}. (1.10)
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F 6

Figure 1.10: The tripartite complement of the graph F6.

Proof. Suppose (1.10) fails to hold. Since F6 contains only one triangle: a2b2c1,

and using the fact that â2 = 1− â1, b̂2 = 1− b̂1, ĉ2 = 1− ĉ1, we have

t(F6, w) = (1− â1)(1− b̂1)ĉ1 (1.11)

α = b̂1(1− ĉ1) + (1− b̂1)ĉ1 (1.12)

β = â1(1− ĉ1) + (1− â1)ĉ1 (1.13)

γ = 1− â1b̂1, (1.14)

Substitute (1.11), (1.12), (1.13), (1.14), into t(F6, w) < αβ+γ−1 and rearrange

to obtain

(1− 2â1)(1− 2b̂1)(1− ĉ1)ĉ1 + â1b̂1ĉ1 < 0. (1.15)

This implies (since ĉ1, 1 − ĉ1, â1, b̂1 ≥ 0) that 0 < 1 − 2â1 or 0 < 1 − 2b̂1 (if

1− 2â1 ≤ 0 and 1− 2b̂1 ≤ 0 then the LHS of (1.15) would be non-negative).

If 0 < 1 − 2â1 is true then substitute (1.11), (1.12), (1.13), (1.14), into

t(F6, w) < αγ + β − 1 and rearrange to obtain

â1b̂1ĉ1(2− b̂1) + â1(1− b̂1)2(1− ĉ1) + (1− 2â1)(1− b̂1)(1− ĉ1) < 0.

But each term in the LHS is strictly non-negative so we have a contradiction.

If instead 0 < 1− 2b̂1 holds then looking at t(F6, w) < βγ + α− 1 yields

â1b̂1ĉ1(2− â1) + b̂1(1− â1)2(1− ĉ1) + (1− 2b̂1)(1− â1)(1− ĉ1) < 0,

which is similarly false.
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Proof of Lemma 1.4.16. Suppose (F7, w) is extremal and vertex minimal. We

may assume w(v) ∈ (0, 1) for all v ∈ V (F7). If t(F7, w) ≥ αβ + γ − 1 then by

Lemma 1.4.7 (F7, w) is not extremal, so we may assume that

t(F7, w) < αβ + γ − 1, (1.16)

and similarly

t(F7, w) < αγ + β − 1, (1.17)

t(F7, w) < βγ + α− 1. (1.18)

Consider moving all the weight from b3 to b2 to create the following weighting

w′ of F7 defined formally as w′(v) = w(v) for all v ∈ V (G) \ {b2, b3}, w′(b2) =

w(b2) + w(b3), and w′(b3) = 0. Changing the weighting from w to w′ does

not change the edge density between A and C, or B and C, but it may have

increased the edge density between A and B and the triangle density. Let us

call the new edge density, between A and B, γ′. Its value can be expressed in

terms of the old weights and densities

γ′ = γ + â2b̂3.

Similarly

t(F7, w
′) = t(F7, w) + â2b̂3ĉ1.

If we can show that

t(F7, w
′) < αβ + γ′ − 1, (1.19)

t(F7, w
′) < αγ′ + β − 1, (1.20)

t(F7, w
′) < βγ′ + α− 1, (1.21)

all hold then, since w′(b3) = 0, we could remove b3 from F7 leaving all densities

unchanged, and the resulting graph would be strongly-isomorphic to F6. This

contradicts Lemma 1.4.17, hence our assumption that (F7, w) is extremal and

vertex minimal must be false.
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First let us show that (1.19) holds. Consider

αβ + γ′ − 1− t(F7, w
′) = αβ + (γ + â2b̂3)− 1− (t(F7, w) + â2b̂3ĉ1)

= αβ + γ − 1− t(F7, w) + â2b̂3(1− ĉ1)

> 0.

The inequality holds because αβ+γ−1− t(F7, w) > 0 by (1.16) and â2, b̂3, ĉ1 ∈
(0, 1).

To prove (1.20) we look at

αγ′ + β − 1− t(F7, w
′) = α(γ + â2b̂3) + β − 1− (t(F7, w) + â2b̂3ĉ1)

= αγ + β − 1− t(F7, w) + â2b̂3(α− ĉ1).

We know αγ + β − 1− t(F7, w) > 0 by (1.17), and â2, b̂3 > 0, so all we have to

do is show that α − ĉ1 ≥ 0. By definition α is the sum of the weighted edges

between B and C, hence

α = (b̂2 + b̂3)ĉ1 + b̂1ĉ2

= (1− b̂1)ĉ1 + b̂1(1− ĉ1).

Therefore

α− ĉ1 = (1− b̂1)ĉ1 + b̂1(1− ĉ1)− ĉ1

= b̂1(1− 2ĉ1).

Since b̂1 is greater than zero, we require ĉ1 ≤ 1/2.

Consider Ca1b1 = {c2} and Ca2b2 = {c1}. Construct (F7, w, p) ∈ DTri by

setting p(e) = 1 for all edges of F7. If ĉ2 < ĉ1 then, by Lemma 1.4.4, we know

we can achieve a smaller triangle density. Therefore ĉ1 ≤ ĉ2 must hold, or

equivalently ĉ1 ≤ 1/2 (as ĉ1 + ĉ2 = 1).

Similarly to prove (1.21) consider

βγ′ + α− 1− t(F7, w
′) = βγ + α− 1− t(F7, w) + â2b̂3(β − ĉ1).

By (1.18) we need only show β−ĉ1 ≥ 0, which is true because β−ĉ1 = â1(1−2ĉ1),

â1 > 0, and ĉ1 ≤ 1/2.
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Lemma 1.4.18. For all weightings w such that (F9, w) ∈ Tri, (F9, w) is either

not extremal or not vertex minimal.

Proof. Let us assume that (F9, w) is extremal and vertex minimal, in which case

w(v) 6= 0 for all v ∈ V (F9). Construct (F10, w
′) ∈ Tri from (F9, w) as follows:

• Create F10 from F9 by removing the edge a3c1. Add a new vertex into C,

labelled c4, and add in edges so that ΓF10(c4) = ΓF9
B (c1) ∪ A.

• Set w′(v) = w(v) for all v ∈ V (F10) \ {c1, c4}. Let

w′(c1) =
w(a1)w(c1)

w(a1) + w(a3)
, and w′(c4) =

w(a3)w(c1)

w(a1) + w(a3)
.

The edge density between A and B remains unchanged and it is easy to check

that the density between B and C also hasn’t changed. The change in edge

density between A and C is

w(a2)w′(c1) + w′(c4)− w(a2)w(c1)− w(a3)w(c1) = 0.

The triangles in F9 are a1b3c2, a2b1c3, a3b2c1 and the triangles in F10 are a1b3c2,

a2b1c3, a1b2c4, a3b2c4. Hence the change in triangle density between (F9, w) and

(F10, w
′) is

(
w(a1) + w(a3)

)
w(b2)w′(c4)− w(a3)w(b2)w(c1) = 0.

Therefore (F9, w) and (F10, w
′) have the same triangle and edge densities.

Note that ΓF10
C (a1) = ΓF10

C (a3) = {c2, c4}. Since |C| = 4 we can apply the

Reduce algorithm to class C in F10, and the resultant output (F ′′, w′′) ∈ Tri

has the same edge densities and the same triangle density (because (F9, w) is

extremal). Moreover |V (F ′′)| = |V (F9)| (as (F9, w) is vertex minimal) and

ΓF
′′

C (a1) = ΓF
′′

C (a3). Hence we can apply Lemma 1.4.13 to (F ′′, w′′), showing

that it is either not extremal or not vertex minimal and so the same must be

true of (F9, w).

Our goal is to produce a list of all tripartite graphs G for which there exists

a weighting w such that (G,w) ∈ Tri(α, β, γ) is extremal and vertex minimal

for some (α, β, γ) ∈ R2. With this aim in mind we have developed a number of
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results that allow us to show (G,w) is not extremal or not vertex minimal by

simply examining G, irrespective of the weighting w.

By Lemmas 1.4.8 and 1.4.11 we need only consider tripartite graphs G in

which all vertex classes contain either two or three vertices. This reduces the

problem to a finite search. However, tripartite graphs with |A| = |B| = |C| = 3

can contain twenty-seven possible edges, so naively there are at least 227 ≈
100, 000, 000 graphs to consider. We can decrease the possible number of graphs

by looking at only those that contain triangles, since otherwise (α, β, γ) /∈ R by

Theorem 1.2.1. By Lemma 1.4.14 we know that if G has a class containing a

pair of vertices with identical neighbours then it is not vertex minimal (because

we can move all the weight from one vertex to the other). Similarly the more

technical results given in Corollary 1.4.5, Lemmas 1.4.10, 1.4.13, 1.4.15, 1.4.16,

and 1.4.18 can also be used to eliminate graphs without knowledge of the vertex

weights. Tripartite graphs that are strongly-isomorphic to graphs eliminated by

these results will also not be extremal or not vertex minimal, and so may also

be discarded.

Unfortunately applying Corollary 1.4.5, Lemmas 1.4.10, 1.4.13, 1.4.14, 1.4.15,

1.4.16, 1.4.18 and Theorem 1.2.1 to over 100, 000, 000 tripartite graphs would

take too long to perform by hand, but can easily be done by computer. A C++

implementation is given in Appendix A. This algorithm produces a list of possi-

ble extremal vertex minimal tripartite graphs in R2, which are equivalent up to

strong-isomorphism to the fourteen graphs, given in Figure 1.11. To decrease

the number further we will have to check each of these graphs by hand.

1.4.3 Specific graphs

To complete the proof of Theorem 1.2.5 we need to eliminate the eleven graphs

found by the computer search, other than H7, H
′
7 and H9. (In the list of fourteen

graphs these are G8, G7 and G13 respectively.)

To be precise we will show that for each Gi, 1 ≤ i ≤ 14, i 6= 7, 8, 13, if

(α, β, γ) ∈ R2 then there does not exist a weighting w such that (Gi, w) ∈
Tri(α, β, γ) and (Gi, w) is both extremal and vertex minimal. Note that the

proof of Lemma 1.4.29 which eliminates G14 is particularly interesting.

Lemma 1.4.19. If (α, β, γ) ∈ R2 then for all weightings w such that (G1, w) ∈
Tri(α, β, γ), (G1, w) is not extremal.
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G1 G2 G3

G4 G5 G6

G7 G8 G9

G10 G11 G12

G13 G14

Figure 1.11: The tripartite complements of the graphs produced by the com-
puter search.
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Proof. G1 is strongly-isomorphic to F6. Hence Lemma 1.4.17 and Lemma 1.4.7

imply (G1, w) is not extremal.

Lemma 1.4.20. If (α, β, γ) ∈ R2 then for all weightings w such that (G2, w) ∈
Tri(α, β, γ), (G2, w) is not extremal.

Proof. Suppose (G2, w) is extremal, by Lemma 1.4.7 we must have t(G2, w) <

αβ + γ − 1. The edge and triangle densities are given by

α = b̂1 + (1− b̂1)ĉ1,

β = 1− â1 + â1ĉ1,

γ = â1b̂1 + (1− â1)(1− b̂1),

t(G2, w) = â1b̂1ĉ1 + (1− â1)(1− b̂1)ĉ1.

Substituting into t(G2, w) < αβ + γ − 1 and simplifying yields

â1(1− b̂1)(1− ĉ1)(1 + ĉ1) < 0

which is false.

Lemma 1.4.21. For (α, β, γ) ∈ R2 there exist no weightings w of G3 such that

(G3, w) ∈ Tri(α, β, γ).

Proof. G3 is strongly-isomorphic to H6. Hence the result follows immediately

from Lemma 1.3.4.

Lemma 1.4.22. If (α, β, γ) ∈ R2 then for all weightings w such that (G4, w) ∈
Tri(α, β, γ), (G4, w) is either not extremal or not vertex minimal.

Proof. Let us assume (G4, w) ∈ Tri(α, β, γ) is vertex minimal, and so w(v) 6= 0

for all v ∈ V (G4). By Lemma 1.3.3 (ii) we also have α, β, γ 6= 0, 1. The densities

in terms of the vertex weights â1, b̂2, ĉ1, and ĉ3, are as follows,

α = 1− b̂2ĉ1,

β = 1− â1ĉ3,

γ = â1b̂2,

t(G4, w) = â1b̂2(1− ĉ1 − ĉ3).
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We can use these equations to write â1, b̂2, ĉ3, and t(G4, w) in terms of ĉ1,

b̂2 =
1− α
ĉ1

, (1.22)

â1 =
γĉ1

1− α
, (1.23)

ĉ3 =
(1− α)(1− β)

γĉ1

,

t(G4, w) = γ − γĉ1 −
(1− α)(1− β)

ĉ1

. (1.24)

From (1.24) we can deduce that t(G4, w) will be minimized when ĉ1 is as

large or as small as possible, because the second derivative with respect to

ĉ1 is negative. Since b̂2 ≤ 1 and â1 ≤ 1, (1.22) and (1.23) imply that ĉ1 ∈
[1− α, (1− α)/γ].

Substituting ĉ1 = 1−α into (1.24) gives t(G4, w) = αγ+β−1. Substituting

ĉ1 = (1 − α)/γ into (1.24) gives t(G4, w) = βγ + α − 1. Hence for ĉ1 ∈
[1− α, (1− α)/γ] we have

t(G4, w) ≥ min{αγ + β − 1, βγ + α− 1}.

Lemma 1.4.7 therefore tells us that (G4, w) can not be extremal.

Lemma 1.4.23. If (α, β, γ) ∈ R2 then for all weightings w such that (G5, w) ∈
Tri(α, β, γ), (G5, w) is either not extremal or not vertex minimal.

Proof. Suppose (α, β, γ) ∈ R2 and (G5, w) ∈ Tri(α, β, γ). We will show that

there exists a weighting w′ ofG4 such that (G4, w
′) ∈ Tri(α, β, γ) and t(G4, w

′) =

t(G5, w). Since |V (G4)| = |V (G5)|, Lemma 1.4.22 implies that (G5, w) is either

not extremal or not vertex minimal.

Suppose (G5, w) is vertex minimal, in which case we may assume w(v) > 0

for all v ∈ V (G5). To prove there exists (G4, w
′) with the same densities as

(G5, w), note that ΓB(a1) = ΓB(a2) in G5. Hence we can modify G5 by applying

Merge on a1, a2 labelling the resulting merged vertex by a. This creates one

partial edge ac2. Apply Split on this edge, to remove it, choosing to replace

the vertex c2. The resulting weighted tripartite graph has the same densities as

(G5, w) and it is easy to check that it is strongly-isomorphic to G4.

Lemma 1.4.24. If (α, β, γ) ∈ R2 then for all weightings w such that (G6, w) ∈
Tri(α, β, γ), (G6, w) is either not extremal or not vertex minimal.
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Proof. Suppose (α, β, γ) ∈ R2 and (G6, w) ∈ Tri(α, β, γ). We will show that

there exists a weighting w′ ofG5 such that (G5, w
′) ∈ Tri(α, β, γ) and t(G5, w

′) =

t(G6, w). Since |V (G5)| = |V (G6)|, Lemma 1.4.23 implies that (G6, w) is either

not extremal or not vertex minimal.

Suppose (G6, w) is vertex minimal, in which case we may assume w(v) > 0

for all v ∈ V (G6). To prove there exists (G5, w
′) with the same densities as

(G6, w), note that ΓC(b2) = ΓC(b3) in G6. Hence we can modify G6 by applying

Merge on b2, b3 labelling the resulting merged vertex b. This creates one partial

edge a2b. Apply Split on that edge, to remove it, choosing to replace the vertex

a2. The resulting weighted tripartite graph has the same densities as (G6, w)

and it is easy to check that it is strongly-isomorphic to G5.

Lemma 1.4.25. For (α, β, γ) ∈ R2 there exist no weightings w of G9 such that

(G9, w) ∈ Tri(α, β, γ).

Proof. Suppose (G9, w) ∈ Tri(α, β, γ) for (α, β, γ) ∈ R2. If w(c2) = 0 then

removing c2 leaves G9 strongly-isomorphic to H6. Hence we get a contradiction

from Lemma 1.3.4. If w(c1) = 0 or w(b2) = 0 then α = 1, and (1, β, γ) /∈ R2 by

Lemma 1.3.3 (ii). Similarly we can show all other vertices must have a non-zero

weight. We will get a contradiction by showing that ∆(α, β, γ) ≥ 0 and hence

(α, β, γ) /∈ R2.

Consider a new weighting w′ given by w′(v) = w(v) for all v ∈ V (G9) \
{c1, c2}, w′(c1) = w(c1) + w(c2), and w′(c2) = 0. For convenience let us write

α′ = α(G9, w
′) (note that β(G9, w

′) = β and γ(G9, w
′) = γ). Since w′(c2) = 0

we could remove it from G9 without changing any densities and the resulting

weighted tripartite graph would be strongly-isomorphic to H6, let w′′ be the

corresponding weighting. Since w(v) 6= 0 for all v ∈ V (G9) we know w′′(v) 6= 0

for all v ∈ V (H6), and consequently t(H6, w
′′) > 0. Lemma 1.3.2 tells us that

Tmin(α′, β, γ) = t(H6, w
′′) > 0, therefore by Theorem 1.2.1 we have (α′, β, γ) ∈

R. Moreover, Lemma 1.3.4 implies that ∆(α′, β, γ) ≥ 0.

Since α′ = 1− w′(b2)w′(c1) = 1− w(b2)w(c1)− w(b2)w(c2), we have

α′ = α− w(b2)w(c2).
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Hence we can write α = α′ + ε, where ε = w(b2)w(c2) > 0. Consider

∆(α, β, γ) = ∆(α′ + ε, β, γ)

= ∆(α′, β, γ) + 2εα′ + ε2 − 2εβ − 2εγ + 4εβγ

= ∆(α′, β, γ) + ε2 + 2ε(α′ + β + γ − 2) + 4ε(1− β)(1− γ)

= ∆(α′, β, γ) + ε2 + 2εt(H6, w
′′) + 4ε(1− β)(1− γ).

Since each term is non-negative we have ∆(α, β, γ) ≥ 0. Therefore (α, β, γ) /∈
R2, a contradiction.

Lemma 1.4.26. For all weightings w such that (G10, w) ∈ Tri, (G10, w) is

either not extremal or not vertex minimal.

Proof. Suppose (G10, w) is extremal and vertex minimal, hence w(v) 6= 0 for

all v ∈ V (G10). Convert (G10, w) into a doubly-weighted tripartite graph by

adding the function p which maps all edges to 1. Applying Merge on (G10, w, p)

and b2, b3, results in only one partial edge being created bc2 (where b is the

vertex replacing b2, b3). We can apply Split on that edge choosing to replace

the vertex c2, and then revert back to a weighted graph (G′10, w
′) say. Now

(G′10, w
′) has the same densities as (G10, w) but G′10 has |B| = 2 and |C| = 3.

Moreover, G10 has the property that ΓB(a1) = ΓB(a3), and this is also true in

G′10. Hence applying Lemma 1.4.13 to (G′10, w
′) and a1, a3, we see that (G′10, w

′)

is not extremal or not vertex minimal. Since |V (G′10)| = |V (G10)| the same is

true of (G10, w).

Lemma 1.4.27. For all weightings w such that (G11, w) ∈ Tri, (G11, w) is

either not extremal or not vertex minimal.

Proof. The proof is almost identical to that of Lemma 1.4.26. The only differ-

ence being at the end, where now we have ΓB(a1) = ΓB(a2) holding true, and

so we apply Lemma 1.4.13 to vertices a1 and a2 instead.

Lemma 1.4.28. For all weightings w such that (G12, w) ∈ Tri, (G12, w) is

either not extremal or not vertex minimal.

Proof. Suppose (G12, w) is vertex minimal, so w(v) > 0 for all v ∈ V (G12). Of

the three statements â1 ≤ â2, b̂1 ≤ b̂2, ĉ1 ≤ ĉ2, at least two must be true or at

least two must be false. Without loss of generality let us suppose that â1 ≤ â2,

b̂1 ≤ b̂2 are both true.
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The densities of (G12, w) are given by

t(G12, w) = â3b̂3ĉ3,

α = b̂1ĉ2 + b̂2ĉ1 + ĉ3,

β = â1ĉ2 + â2ĉ1 + â3,

γ = â1b̂2 + â2b̂1 + b̂3.

Consider the doubly-weighted tripartite graph (G12, w, p) where p maps all

edges to 1. It has the same densities as (G12, w). If we move a sufficiently small

amount of weight δ > 0 from vertex c2 to c1, α and β increase. By decreasing

p(b3c3) and p(a3c3) respectively we can keep all edge densities unchanged. More

precisely set

p(b3c3) = 1− δ(b̂2 − b̂1)/b̂3ĉ3, p(a3c3) = 1− δ(â2 − â1)/â3ĉ3.

If â1 = â2 and b̂1 = b̂2, then increasing the weight of c1 to ĉ1 + ĉ2 and removing

c2 will result in a weighted tripartite graph with the same densities as (G12, w)

but with fewer vertices. Hence we know that p(b3c3) < 1 or p(a3c3) < 1.

Consequently we now have a doubly-weighted tripartite graph with the same

edge densities as (G12, w) but a strictly smaller triangle density. Hence by

Lemma 1.4.1 (G12, w), is not extremal.

Suppose now that two of the statements â1 ≤ â2, b̂1 ≤ b̂2, ĉ1 ≤ ĉ2, are false,

for example â1 > â2 and b̂1 > b̂2. We can repeat the above argument, this time

moving weight from c1 to c2, again constructing a doubly-weighted tripartite

graph with the same edge densities but a smaller triangle density.

Lemma 1.4.29. If (α, β, γ) ∈ R2 then for all weightings w such that (G14, w) ∈
Tri(α, β, γ), (G14, w) is either not extremal or not vertex minimal.

Proof. Suppose (G14, w) is extremal and vertex minimal, so w(v) > 0 for all

v ∈ V (G14). Consider the doubly-weighted tripartite graph (G14, w, p), where p

maps all edges to 1. Applying Lemma 1.4.4 to (G14, w, p) on the non-edge a1b1

and the edge a3b2 tells us that in order to be extremal∑
c∈Ca1b1

w(c) ≥
∑

c∈Ca3b2

w(c)

must hold. Since Ca1b1 = {c2, c3} and Ca3b2 = {c1} we must have ĉ2 + ĉ3 ≥ ĉ1
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or equivalently 1− 2ĉ1 ≥ 0 (using the fact that ĉ1 + ĉ2 + ĉ3 = 1). Similarly we

can show that 1 − 2ĉ2 ≥ 0 by looking at a2b2, a1b3, and 1 − 2ĉ3 ≥ 0 by taking

a3b3, a2b1. By symmetry we must have 1− 2w(v) ≥ 0 for all v ∈ V (G14). Note

that the function w′ defined by w′(v) = 1 − 2w(v) for all v ∈ V (G14) provides

a valid weighting of G14, as w′(v) ≥ 0 for all v ∈ V (G14) and the sum of the

weights in a class, X say, is∑
v∈X

w′(v) =
∑
v∈X

(1− 2w(v))

= |X| − 2
∑
v∈X

w(v)

= |X| − 2

= 1

because every class in G14 has size three.

Recall that G14 is the tripartite complement of the graph G14. Consider the

weighted tripartite graph (G14, w
′), with edge densities

α(G14, w
′) = α′, β(G14, w

′) = β′, γ(G14, w
′) = γ′.

We can write down α′ in terms of α.

α′ = (1− 2b̂1)(1− 2ĉ1) + (1− 2b̂2)(1− 2ĉ2) + (1− 2b̂3)(1− 2ĉ3)

= 3− 2(b̂1 + b̂2 + b̂3)− 2(ĉ1 + ĉ2 + ĉ3) + 4(b̂1ĉ1 + b̂2ĉ2 + b̂3ĉ3)

= 3− 4(1− b̂1ĉ1 − b̂2ĉ2 − b̂3ĉ3)

= 3− 4α,

similarly β′ = 3− 4β, and γ′ = 3− 4γ. Next let us write t(G14, w
′) in terms of

t(G14, w),
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t(G14, w
′) = (1− 2â1)(1− 2b̂1)(1− 2ĉ1) + (1− 2â2)(1− 2b̂2)(1− 2ĉ2)+

(1− 2â3)(1− 2b̂3)(1− 2ĉ3)

= 3− 2(â1 + â2 + â3)− 2(b̂1 + b̂2 + b̂3)− 2(ĉ1 + ĉ2 + ĉ3)+

4(â1b̂1 + â1ĉ1 + b̂1ĉ1 + â2b̂2 + â2ĉ2 + b̂2ĉ2 + â3b̂3 + â3ĉ3 + b̂3ĉ3)−

8(â1b̂1ĉ1 + â2b̂2ĉ2 + â3b̂3ĉ3)

= 1 + 4(â1b̂1 + â1ĉ1 + b̂1ĉ1 + â2b̂2 + â2ĉ2 + b̂2ĉ2 + â3b̂3 + â3ĉ3 + b̂3ĉ3−

2â1b̂1ĉ1 − 2â2b̂2ĉ2 − 2â3b̂3ĉ3 − â1 − â2 − â3)

= 1 + 4((1− â1)b̂1ĉ1 + (1− â2)b̂2ĉ2 + (1− â3)b̂3ĉ3−

â1(1− b̂1)(1− ĉ1)− â2(1− b̂2)(1− ĉ2)− â3(1− b̂3)(1− ĉ3))

= 1 + 4((â2 + â3)b̂1ĉ1 + (â1 + â3)b̂2ĉ2 + (â1 + â2)b̂3ĉ3−

â1(b̂2 + b̂3)(ĉ2 + ĉ3)− â2(b̂1 + b̂3)(ĉ1 + ĉ3)− â3(b̂1 + b̂2)(ĉ1 + ĉ2))

= 1 + 4(−â1b̂2ĉ3 − â1b̂3ĉ2 − â2b̂1ĉ3 − â2b̂3ĉ1 − â3b̂1ĉ2 − â3b̂2ĉ1)

= 1− 4t(G14, w).

Without loss of generality suppose α′ ≤ β′ ≤ γ′. Since (G14, w) is extremal by

Lemma 1.4.6 we have

t(G14, w) ≤ 2
√
αβ(1− γ) + 2γ − 2.

Rewriting in terms of α′, β′, γ′, t(G14, w
′) gives

3 + 2γ′ − t(G14, w
′) ≤

√
(3− α′)(3− β′)(1 + γ′).

Note that in any weighted tripartite graph the triangle density is bounded above

by all of the edge densities, thus t(G14, w
′) ≤ α′, and so

3 + 2γ′ − α′ ≤
√

(3− α′)(3− β′)(1 + γ′).

Squaring both sides and rearranging yields

α′2 + γ′(4γ′ − α′β′) + γ′(3β′ − α′) + 3(γ′ − α′) + β′(3− α′) ≤ 0.

Each term is non-negative (because 0 ≤ α′ ≤ β′ ≤ γ′ ≤ 1), and so the only
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way this can be true is if α′ = β′ = γ′ = 0. Hence α = β = γ = 3/4, but

such values do not lie in R2 due to the fact that ∆(3/4, 3/4, 3/4) = 0. Thus we

have a contradiction and our assumption that (G14, w) is extremal and vertex

minimal must be false.

Proof of Theorem 1.2.5. Our computer search tells us that the only possible

extremal and vertex minimal tripartite graphs are strongly-isomorphic to those

given in Figure 1.11. Given (α, β, γ) ∈ R2 for all weightings w, (G1, w), (G2, w),

(G3, w), (G4, w), (G5, w), (G6, w), (G9, w), (G10, w), (G11, w), (G12, w), (G14, w)

are either not extremal, not vertex minimal, or do not lie in Tri(α, β, γ) by

Lemmas 1.4.19 to 1.4.29 respectively. This just leaves G7, G8, and G13 which

are strongly-isomorphic to H ′7, H7 and H9 respectively.

1.5 Guaranteeing a triangle or a 5-cycle

Bondy, Shen, Thomassé, and Thomassen [4] showed that any tripartite graph

with edge densities α, β, γ must contain a triangle if (α, β, γ) ∈ R, where

R = {(α, β, γ) ∈ [0, 1]3 : αβ + γ > 1, αγ + β > 1, βγ + α > 1}.

By setting α = β = γ we see that if the edge densities between each pair of

classes in a tripartite graph is greater than 1/ϕ = 0.618 . . . then the graph must

contain a triangle. A triangle-free tripartite graph with edge densities 0.618

is possible by taking an appropriate blow-up of the 5-cycle. Hence a natural

question to ask is: if our tripartite graph has no triangles or 5-cycles how large

can the minimum density between pairs of classes be?

It is easy to show that blow-ups of triangle and 5-cycle-free graphs are still

triangle and 5-cycle-free. Hence any results for weighted tripartite graphs will

hold for tripartite graphs. Using weighted tripartite graphs we can characterize

those edge densities that guarantee the existence of a triangle or 5-cycle.

Theorem 1.5.1. If (G,w) ∈ Tri(α, β, γ) and (α, β, γ) ∈ R′ then G contains a

triangle or 5-cycle, where

R′ = {(α, β, γ) ∈ [0, 1]3 : 2αβ − α− β + γ > 0, 2αγ − α− γ + β > 0,

2βγ − β − γ + α > 0}.
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If (α, β, γ) ∈ [0, 1]3 \R′, then there exists (G,w) ∈ Tri(α, β, γ) such that G does

not contain a triangle or 5-cycle.

Again by setting α = β = γ we get the following simple corollary.

Corollary 1.5.2. If G is a tripartite graph with edge densities α, β, γ > 1/2

then G contains a triangle or 5-cycle.

Note that the value of 1/2 is best possible due to the following construction.

Take a tripartite graph with two vertices in each class, colour one vertex red

and the other blue. Add edges between every blue and red vertex (provided

they do not lie in the same class). This graph is bipartite (as seen by its red-

blue-colouring) and so cannot contain a triangle or 5-cycle. Also it is easy to

check that the edge density is 1/2 between every pair of classes.

A simple extension of this result is that every k-partite graph with k ≥ 3

and pairwise edge density greater than 1/2, contains a triangle or 5-cycle. This

is trivially implied by Corollary 1.5.2. An edge density of 1/2 is again best

possible. This can be seen by considering a k-partite graph with two vertices in

each class one coloured red and the other blue, and whose edges are precisely

those between the red and blue vertices.

To prove Theorem 1.5.1 we need the following modified version of the Reduce

algorithm, which we will call Reduce2. This appears as part of the proof of

Theorem 3 in [4].

Algorithm 1.5.3 (Reduce2). The algorithm Reduce2 takes as input (G,w) ∈
Tri and a vertex class X of G, satisfying |X| > 2. Its output, represented

by Reduce2(G,w,X), is a weighted tripartite graph with |X| ≤ 2, and edge

densities at least as big as those of (G,w). Furthermore if G is triangle and

5-cycle-free so is the underlying tripartite graph of Reduce2(G,w,X).

To help explain the algorithm we will suppose X = A, (the other choices of

X work similarly). For each vertex ai ∈ A let

βi =
∑

c∈ΓC(ai)

w(c), γi =
∑

b∈ΓB(ai)

w(b).

By definition

β =

|A|∑
i=1

w(ai)βi, γ =

|A|∑
i=1

w(ai)γi.
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Consider the convex hull

P =


|A|∑
i=1

xi(βi, γi) :

|A|∑
i=1

xi = 1 and xi ≥ 0

 .

Setting xi = w(ai) shows that (β, γ) lies in P . By varying the values of the xi

we can increase the value of β to β′ such that (β′, γ) lies on the boundary of

P . Consequently we can express (β′, γ) as a convex combination of at most two

elements of {(βi, γi) : 1 ≤ i ≤ |A|}. Hence we can write

(β′, γ) =

|A|∑
i=1

xi(βi, γi)

where
∑
xi = 1 and at most two of the xi are positive, the rest are zero. Now

define a new weighting w′ for G by w′(ai) = xi, w
′(v) = w(v) for v ∈ V (G) \A.

The weighted tripartite graph (G,w′) has edge densities at least as big as those

of (G,w). Furthermore we can remove the zero weighted vertices from A so that

|A| ≤ 2 (this does not affect the densities). Since the underlying graph is G with

some vertices removed, if G is triangle and 5-cycle-free so is Reduce2(G,w,X).

The edge densities of a weighted tripartite graph may increase after an

application of the Reduce2 algorithm, consequently we will require the following

lemma.

Lemma 1.5.4. If (α, β, γ) ∈ R′ and α′, β′, γ′ ∈ [0, 1] satisfy α′ ≥ α, β′ ≥ β,

γ′ ≥ γ then (α′, β′, γ′) ∈ R′.

Proof. It is enough to show that (α, β, γ) ∈ R′ implies (α′, β, γ) ∈ R′. The same

argument can be used to show that (α′, β, γ) ∈ R′ implies (α′, β′, γ) ∈ R′, and

that (α′, β′, γ) ∈ R′ implies (α′, β′, γ′) ∈ R′. To prove that (α′, β, γ) lies in R′

we need to show α′, β, γ satisfy

2α′β − α′ − β + γ > 0, 2α′γ − α′ − γ + β > 0, 2βγ − β − γ + α′ > 0.

We will begin by showing 2α′β − α′ − β + γ > 0. Since (α, β, γ) ∈ R′ we

know that

0 < (2αβ − α− β + γ) + (2αγ − α− γ + β) = 2α(β + γ − 1),
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hence β + γ− 1 > 0. Consider the following rearrangement of 2αβ−α− β + γ:

α(2β − 1)− β + γ. (1.25)

If 2β − 1 ≥ 0 then increasing α to α′ will not cause a decrease in (1.25), and

therefore 2α′β − α′ − β + γ > 0. If 2β − 1 < 0 then (1.25) will decrease, in

the worst case (when α′ = 1) to β + γ − 1. However, we have shown that

β + γ − 1 > 0 and so 2α′β − α′ − β + γ > 0 still holds.

We omit the proof of 2α′γ − α′− γ + β > 0 as it follows an almost identical

argument. Proving 2βγ − β − γ + α′ > 0 is trivial given that α′ ≥ α and

(α, β, γ) ∈ R′ implies 2βγ − β − γ + α > 0. Hence (α′, β, γ) lies in R′.

Proof of Theorem 1.5.1. First we will show that if (G,w) ∈ Tri(α, β, γ) and

(α, β, γ) ∈ R′ then G contains a triangle or 5-cycle. Suppose there exists a

counterexample (G,w) ∈ Tri(α, β, γ) with G triangle and 5-cycle-free, and

(α, β, γ) ∈ R′. If G has more than two vertices in any class we can apply

Reduce2 to ensure that G has at most two vertices in each class. Lemma 1.5.4

tells us that even if the Reduce2 increases the edge densities we will still be left

with a counterexample. If G has one vertex in a class, we can add a vertex and

give it a weight of zero (this will not affect the edge densities). Hence we may

assume that G has precisely two vertices in each class.

Since G has six vertices and does not contain a triangle or 5-cycle, it does not

contain an odd cycle and so must be 2-colourable. Given a 2-colouring of G we

can assume that all edges between different coloured vertices are present (unless

such an edge lies in one of the vertex classes). Adding in such edges cannot

create a triangle or 5-cycle and can only increase the edge densities (which does

not pose a problem due to Lemma 1.5.4). Finding all edge maximal 2-colourable

tripartite graphs with two vertices in each class, is simple and easily doable by

hand. There are six such graphs (up to strong-isomorphism) and they are given

in Figure 1.12, we will refer to them as S1, . . . , S6.

Due to the symmetric nature of R′ we do not need to consider all the graphs

strongly-isomorphic to S1, . . . , S6. It is enough to show that for any weighting

w and any Si (i = 1, . . . , 6) the edge densities cannot lie in R′. We will continue

to use the canonical labelling as illustrated in Figure 1.9 to refer to the classes,

vertices, and weights of S1, . . . , S6.

For all weightings w, (S1, w), (S2, w), and (S3, w) have γ = 0. It is easy to
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S1 S2 S3

S4 S5 S6

Figure 1.12: All edge maximal 2-colourable tripartite graphs, with two vertices
in each class, up to strong-isomorphism. The colour classes, red-blue say, are
highlighted by circles around the red coloured vertices, and no circles around
the blue vertices.

check that (α, β, 0) ∈ R′ implies −α+β > 0 and −β+α > 0, therefore (S1, w),

(S2, w), and (S3, w) do not have densities which lie in R′.

For S4, α = b̂2, β = â1, and γ = b̂2(1− â1)+ â1(1− b̂2) = α+β−2αβ. Hence

2αβ − α− β + γ = 0 and consequently (α, β, γ) /∈ R′.
For S5, α = ĉ1, β = 1 − ĉ1 = 1 − α, and γ = 1. Substituting γ = 1 and

β = 1− α into 2αγ − α− γ + β shows that it is 0, proving the densities do not

lie in R′.

The last graph we have to consider is S6. Its densities are

α = b̂1(1− ĉ1) + ĉ1(1− b̂1),

β = â1(1− ĉ1) + ĉ1(1− â1),

γ = â1(1− b̂1) + b̂1(1− â1).

By the pigeonhole principle two of 1−2â1, 1−2b̂1, 1−2ĉ1 must be negative or two

must be non-negative. Without loss of generality suppose (1−2â1)(1−2b̂1) ≥ 0.
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S7

Figure 1.13: The tripartite graph S7 that can always be weighted to achieve
any edge densities satisfying 2αβ − α− β + γ ≤ 0.

This is enough to show (α, β, γ) /∈ R′, as

2αβ − α− β + γ = −2(1− 2â1)(1− 2b̂1)ĉ1(1− ĉ1) ≤ 0.

Hence there does not exist a triangle and 5-cycle-free (G,w) ∈ Tri(α, β, γ) with

(α, β, γ) ∈ R′. Next we will show that the region R′ is best possible by proving

for any (α, β, γ) ∈ [0, 1]3 \R′ there exists (G,w) ∈ Tri(α, β, γ) which is triangle

and 5-cycle-free.

If (α, β, γ) ∈ [0, 1]3 \R′, then one of the three inequalities

2αβ − α− β + γ > 0, 2αγ − α− γ + β > 0, 2βγ − β − γ + α > 0,

must not hold. Without loss of generality suppose 2αβ − α − β + γ ≤ 0. The

tripartite graph S7 given in Figure 1.13 can be weighted to achieve any edge

densities satisfying 2αβ − α − β + γ ≤ 0. Specifically the weighting w defined

as follows,

w(a1) = β, w(a2) = λ(1− β), w(a3) = (1− λ)(1− β),

w(b1) = (1− λ)(1− α), w(b2) = λ(1− α), w(b3) = α,

w(c1) = 1,

where λ = 0 if α+ β − 2αβ = 0 and λ = γ/(α+ β − 2αβ) otherwise. It is easy

to check that w is a valid weighting.
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1.6 Conjectures

The following conjecture, if true, would allow us to write Tmin(α, β, γ) as a

simple expression for all values of α, β, γ ∈ [0, 1].

Conjecture 1.6.1. For γ ≤ α, β,

Tmin(α, β, γ) =


0, if (α, β, γ) ∈ [0, 1]3 \R,

2
√
αβ(1− γ) + 2γ − 2, if (α, β, γ) ∈ R2,

α + β + γ − 2, otherwise.

To prove Conjecture 1.6.1 it is sufficient to prove the subsequent conjecture.

Conjecture 1.6.2. If (α, β, γ) ∈ R2 then for all weightings w such that (H9, w)

∈ Tri(α, β, γ), (H9, w) is either not extremal or not vertex minimal.

Theorem 1.6.3. Conjecture 1.6.2 implies Conjecture 1.6.1.

Proof. Theorems 1.2.1 and 1.2.4 tell us when Tmin(α, β, γ) = 0 and α+β+γ−2

respectively. By Theorem 1.2.5 and Conjecture 1.6.2 we know that the only

extremal tripartite graphs we have to consider are H7 and H ′7. Let us show that

H ′7 can do no better than H7.

Let (α, β, γ) ∈ R2 and (H ′7, w
′) ∈ Tri(α, β, γ). We need to show there exists

a weighting w for H7 so that (H7, w) has the same densities as (H ′7, w
′). Note

that ΓA(b2) = ΓA(b3) in H ′7 and w′(b2) +w′(b3) > 0 (otherwise α = 1 which can

not occur according to Lemma 1.3.3 (ii)). Hence we can modify H ′7 by applying

Merge on b2, b3 labelling the resulting merged vertex b. This creates one partial

edge bc2. Apply Split to this edge to remove it, choosing to replace the vertex

c2. The resulting weighted tripartite graph has the same densities as (H ′7, w
′)

and it is easy to check that it is strongly-isomorphic to H7.

Therefore when (α, β, γ) ∈ R2 we need only consider the graphs strongly-

isomorphic to H7, and by Lemma 1.4.6 we get Tmin(α, β, γ) is equal to

min{2
√
αβ(1− γ)+2γ−2, 2

√
αγ(1− β)+2β−2, 2

√
βγ(1− α)+2α−2}.

To finish the proof let us show that γ ≤ β if and only if

2
√
αγ(1− β) + 2β − 2 ≥ 2

√
αβ(1− γ) + 2γ − 2.
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We can prove a similar result for γ ≤ α. For ease of notation let d1 =

2
√
αγ(1− β) + 2β − 2 and d2 = α + β + γ − 2. So we have

d1 ≥ 2
√
αβ(1− γ) + 2γ − 2

⇐⇒ d1 + 2(1− γ) ≥ 2
√
αβ(1− γ)

⇐⇒ (d1 + 2(1− γ))2 ≥ 4αβ(1− γ)

= (d2 + 2(1− γ))2 −∆(α, β, γ)

⇐⇒ d2
1 + 4d1(1− γ) ≥ d2

2 + 4d2(1− γ)−∆(α, β, γ)

⇐⇒ d2
1 + 4d1 − d2

2 − 4d2 + ∆(α, β, γ) ≥ 4γ(d1 − d2)

By Lemma 1.3.1 we know d1 − d2 ≥ 0. It is easy to check that d1 − d2 = 0

implies ∆(α, β, γ) ≥ 0 which is not true, since (α, β, γ) ∈ R2. Consequently we

have

d1 ≥ 2
√
αβ(1− γ) + 2γ − 2 ⇐⇒ d2

1 + 4d1 − d2
2 − 4d2 + ∆(α, β, γ)

4(d1 − d2)
≥ γ.

Substituting d1 = 2
√
αγ(1− β) + 2β − 2 and d2 = α + β + γ − 2 into

d2
1 + 4d1 − d2

2 − 4d2 + ∆(α, β, γ)

4(d1 − d2)

shows that it simplifies to β. Thus

2
√
αγ(1− β) + 2β − 2 ≥ 2

√
αβ(1− γ) + 2γ − 2 ⇐⇒ β ≥ γ.

In this chapter we have dealt primarily with triangles in tripartite graphs,

but a natural generalisation is to consider at what edge density a 4-partite graph

must contain a K4 (the complete graph on four vertices). Nagy [28] makes the

following conjecture.

Conjecture 1.6.4 (Nagy [28]). If the edge density between every pair of classes

in a 4-partite graph is greater than 0.7722 . . . then the graph must contain a K4.
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Chapter 2

Turán Densities and Razborov’s

Flag Algebras

2.1 Introduction

An r-uniform hypergraph (or r-graph for short) is a pair F = (V (F ), E(F ))

where V (F ) is a set of vertices and E(F ) is a family of r-subsets of V (F ) called

edges. So a 2-graph is a simple graph. For ease of notation we often identify an

r-graph F with its edge set. The density of an r-graph F is

d(F ) =
|E(F )|(

n
r

) .

Given a family of r-graphs F we say that an r-graph H is F-free if H does

not contain a subgraph isomorphic to any member of F . For any integer n ≥ 1

we define the Turán number of F to be

ex(n,F) = max{|E(H)| : H is F -free, |V (H)| = n}.

The Turán density of F is defined to be the following limit (a simple averaging

argument shows that it always exists)

π(F) = lim
n→∞

ex(n,F)(
n
r

) .

In this chapter we describe the recent work of Razborov [31] on flag algebras

that introduces a new technique that drastically improves our ability to compute
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(and approximate) Turán densities of hypergraphs. We outline the necessary

background in the next section but emphasize that the reader should consult

Razborov [29] and [31] for a full description of his work.

We apply Razborov’s method to Erdős’ jumping hypergraph problem to find

the first non-trivial regions of jumps (Theorem 2.3.1 and Corollary 2.3.5). We

then use it to determine the exact Turán densities of five hypergraphs (Theorem

2.4.1). We finish by extending the method to Turán type problems in the

hypercube, proving a number of new results. These include a significantly

smaller bound on the Turán density of 4-cycle-free subgraphs of hypercubes

(a problem posed by Erdős), and a new exact Turán density for hypercubes

(Theorems 2.5.1 and 2.5.2 respectively).

2.2 Computing Turán densities via flag alge-

bras

2.2.1 Razborov’s method

Let F be a family of r-graphs whose Turán density we wish to compute (or

at least approximate). Razborov [31], describes a method for attacking this

problem that can be thought of as a general application of Cauchy–Schwarz

using the information given by small F -free r-graphs.

Let H be the family of all F -free r-graphs of order l, up to isomorphism.

If l is sufficiently small we can explicitly determine H (by computer search if

necessary).

For H ∈ H and a large F -free r-graph G, we define p(H;G) to be the

probability that a random l-set from V (G) induces a subgraph isomorphic to

H. Trivially, the density of G is equal to the probability that a random r-set

from V (G) forms an edge in G. Thus, averaging over l-sets in V (G), we can

express the density of G as

d(G) =
∑
H∈H

d(H)p(H;G), (2.1)

and hence d(G) ≤ maxH∈H d(H).

This “averaging” bound on d(G) is in general rather poor: clearly it could

only be sharp if all subgraphs of G of order l are as dense as possible. It also
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fails to consider how different subgraphs of G can overlap. Razborov’s flag

algebras method allows us to make use of the information given by examining

overlapping subgraphs of G to give far stronger bounds.

A flag, F = (GF , θ), is an r-graph GF together with an injective map θ :

[s]→ V (GF ). If θ is bijective (and so |V (GF )| = s) we call the flag a type. For

ease of notation given a flag F = (GF , θ) we define its order |F | to be |V (GF )|.
Given a type σ we call a flag F = (GF , θ) a σ-flag if the induced labelled

subgraph of GF given by θ is σ. A flag F = (GF , θ) is admissible if GF is F -free.

Fix a type σ and an integer m ≤ (l + |σ|)/2. (The bound on m ensures

that an l-vertex r-graph can contain two m-vertex subgraphs overlapping in

|σ| vertices.) Let Fσm be the set of all admissible σ-flags of order m, up to

isomorphism. Let Θ be the set of all injective functions from [|σ|] to V (G).

Given F ∈ Fσm and θ ∈ Θ we define p(F, θ;G) to be the probability that an

m-set V ′ chosen uniformly at random from V (G) subject to im(θ) ⊆ V ′, induces

a σ-flag (G[V ′], θ) that is isomorphic to F .

If Fa, Fb ∈ Fσm and θ ∈ Θ then p(Fa, θ;G)p(Fb, θ;G) is the probability

that two m-sets Va, Vb ⊆ V (G), chosen independently at random subject to

im(θ) ⊆ Va ∩ Vb, induce σ-flags (G[Va], θ), (G[Vb], θ) that are isomorphic to

Fa, Fb respectively. We define a related probability, p(Fa, Fb, θ;G), to be the

probability that if we choose a random m-set Va ⊆ V (G), subject to im(θ) ⊆ Va

and then choose a random m-set Vb ⊆ V (G) such that Va ∩ Vb = im(θ) then

(G[Va], θ), (G[Vb], θ) are isomorphic to Fa, Fb respectively. Note that the dif-

ference between p(Fa, θ;G)p(Fb, θ;G) and p(Fa, Fb, θ;G) is due to the effect of

sampling with or without replacement. When G is large this difference will be

negligible, as the following lemma tells us. (This is a very special case of Lemma

2.3 in [29].)

Lemma 2.2.1 (Razborov [29]). For any Fa, Fb ∈ Fσm, and θ ∈ Θ,

p(Fa, θ;G)p(Fb, θ;G) = p(Fa, Fb, θ;G) + o(1),

where the o(1) term tends to zero as |V (G)| tends to infinity.

Proof. Choose random m-sets Va, Vb ⊆ V (G), independently, subject to im(θ) ⊆
Va ∩ Vb. Let E be the event that Va ∩ Vb = im(θ). Then

p(Fa, Fb, θ;G)P[E] ≤ p(Fa, θ;G)p(Fb, θ;G) ≤ p(Fa, Fb, θ;G)P[E] + P[Ē].
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If |V (G)| = n then

P[E] =

(
n−|σ|
m−|σ|

)(
n−m
m−|σ|

)
(
n−|σ|
m−|σ|

)2 = 1− o(1).

Averaging over a uniformly random choice of θ ∈ Θ we have

Eθ∈Θ [p(Fa, θ;G)p(Fb, θ;G)] = Eθ∈Θ [p(Fa, Fb, θ;G)] + o(1). (2.2)

Note that this expectation can be computed by averaging over l-vertex sub-

graphs of G. For an l-vertex subgraph H ∈ H let ΘH be the set of all injective

maps θ : [|σ|]→ V (H). Recall that, for H ∈ H, p(H;G) is the probability that

a random l-set from V (G) induces a subgraph isomorphic to H. Thus,

Eθ∈Θ [p(Fa, Fb, θ;G)] =
∑
H∈H

Eθ∈ΘH [p(Fa, Fb, θ;H)] p(H;G). (2.3)

Consider a positive semidefinite matrix Q = (qab) of dimension |Fσm|. For

θ ∈ Θ define pθ = (p(F, θ;G) : F ∈ Fσm). Using (2.2), (2.3) and linearity of

expectation we have

Eθ∈Θ[pTθQpθ] =
∑

Fa,Fb∈Fσm

∑
H∈H

qabEθ∈ΘH [p(Fa, Fb, θ;H)]p(H;G) + o(1). (2.4)

For H ∈ H define the coefficient of p(H;G) in (2.4) by

cH(σ,m,Q) =
∑

Fa,Fb∈Fσm

qabEθ∈ΘH [p(Fa, Fb, θ;H)]. (2.5)

Suppose we have t choices of (σi,mi, Qi), where each σi is a type, each mi ≤ (l+

|σi|)/2 is an integer, and each Qi is a positive semidefinite matrix of dimension

|Fσimi |. For H ∈ H define

cH =
t∑
i=1

cH(σi,mi, Qi).

Note that cH is independent of G.
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Since each Qi is positive semidefinite (2.4) implies that∑
H∈H

cHp(H;G) + o(1) ≥ 0.

Thus, using (2.1), we have

d(G) ≤
∑
H∈H

(d(H) + cH)p(H;G) + o(1).

Hence the Turán density satisfies

π(F) ≤ max
H∈H

(d(H) + cH). (2.6)

Since the cH may be negative, for an appropriate choice of the (σi,mi, Qi), this

bound may be significantly better than the trivial averaging bound given by

(2.1).

Note that we now have a semidefinite programming problem: given any

particular choice of the (σi,mi) find positive semidefinite matrices Qi so as to

minimize the bound for π(F) given by (2.6).

2.2.2 An example

We now illustrate Razborov’s method with a simple example. Let K−4 =

{123, 124, 134}. We will reprove de Caen’s [7] bound: π(K−4 ) ≤ 1/3.

Let l = 4, so H consists of all K−4 -free 3-graphs of order four, up to isomor-

phism. There are three such 3-graphs which we will refer to as H0, H1, and H2,

they have 0, 1, and 2 edges respectively (this is enough information to uniquely

identify them). We will use a single type: σ = (Gσ, θ) where V (Gσ) = [2],

E(Gσ) = ∅ and θ(x) = x. Taking m = 3, there are only two admissible σ-flags

of order three up to isomorphism: F0 and F1, containing no edges and one edge

respectively.

In order to calculate the coefficients cH we need to compute Eθ∈ΘH [p(Fa, Fb, θ;

H)], for each H ∈ {H0, H1, H2} and each pair Fa, Fb ∈ {F0, F1}. Their values

are given in the following table.
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H2 a b

d c

Figure 2.1: The 3-graph H2, with vertices labelled a, b, c, d. Its two edges are
acd and bcd.

H0 H1 H2

F0, F0 1 1/2 1/6

F0, F1 0 1/4 1/3

F1, F1 0 0 1/6

As an example of how these values are computed consider Eθ∈ΘH2
[p(F0, F1, θ;

H2)]. This is the probability that a random choice of θ ∈ ΘH2 and 3-sets

V0, V1 ⊂ V (H2) such that V0 ∩ V1 = im(θ), induce σ-flags (H2[V0], θ), (H2[V1], θ)

that are isomorphic to F0, F1 respectively. A random of choice of θ ∈ ΘH2

is equivalent to picking a random ordered pair of vertices (u, v) from H2, and

setting θ(1) = u and θ(2) = v. To form the random 3-sets V0, V1 we pick the

remaining two vertices of V (H2) \ {u, v} randomly in the order x, y and set

V0 = {u, v, x}, V1 = {u, v, y}. The σ-flags (H2[V0], θ), (H2[V1], θ) are isomorphic

to F0, F1 if and only if V0 /∈ E(H2) and V1 ∈ E(H2) respectively. Consequently

Eθ∈ΘH2
[p(F0, F1, θ;H2)] is the probability that a random permutation (u, v, x, y)

of V (H2) satisfies {u, v, x} /∈ E(H2) and {u, v, y} ∈ E(H2). Of the twenty-four

permutations of V (H2) = {a, b, c, d}, see Figure 2.1, the following eight have

this property:

(a, c, b, d), (a, d, b, c), (b, c, a, d), (b, d, a, c),

(c, a, b, d), (d, a, b, c), (c, b, a, d), (d, b, a, c).

Hence Eθ∈ΘH2
[p(F0, F1, θ;H2)] = 8/24 = 1/3.

We now need to find a positive semidefinite matrix

Q =

(
q00 q01

q01 q11

)
,
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to minimize the bound given by (2.6). Note that

cH0 = q00,

cH1 =
1

2
q00 +

1

2
q01,

cH2 =
1

6
q00 +

2

3
q01 +

1

6
q11.

The bound on π(K−4 ) given by (2.6) is now

π(K−4 ) ≤ max

{
q00,

q00

2
+
q01

2
+

1

4
,

q00

6
+

2q01

3
+
q11

6
+

1

2

}
.

This can be expressed as a semidefinite programming problem. The solution to

which is

Q =
1

3

(
1 −2

−2 4

)
.

Consequently π(K−4 ) ≤ max{1/3, 1/12, 1/3} = 1/3.

2.2.3 Solving the semidefinite program

Razborov’s method as outlined above reduces the problem of computing an up-

per bound on a Turán density to solving a semidefinite programming problem.

In practice this may be computationally difficult. Razborov [31] describes a

number of ways that this problem can be simplified so as to make the compu-

tation more tractable. We outline one of these ideas below, which we made use

of in our work.

For a type σ and the collection of all admissible σ-flags of order m, Fσm
define RFσm to be the real vector space of formal linear combinations of σ-flags

of order m. Let H be the collection of all admissible r-graphs of order l.

Let us introduce Razborov’s J·Kσ notation (which will make our expressions

easier to read). Define J·Kσ : RFσm × RFσm → R|H|, by

JFaFbKσ = (Eθ∈ΘH [p(Fa, Fb, θ;H)] : H ∈ H),

for Fa, Fb ∈ Fσm and extend to be bilinear.

For a positive semidefinite matrix Q and p = (F : F ∈ Fσm), the vector of
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all admissible σ-flags (in an arbitrary but fixed order), we have

JpTQpKσ = (cH(σ,m,Q) : H ∈ H),

where the cH are as defined in (2.5).

Razborov [31] describes a natural change of basis for RFσm. The important

property (in terms of reducing the computational complexity of the associated

semidefinite program) is that the new basis is of the form B = B+∪̇B− and for

all B+ ∈ B+ and B− ∈ B− we have JB+B−Kσ = 0. Thus in our new basis the

corresponding semidefinite program has a solution Q′ which is a block diagonal

matrix with two blocks: of sizes |B+| and |B−| respectively. Since the best

algorithms for solving semidefinite programs scale like the square of the size of

block matrices this change of basis can potentially simplify our computation

significantly.

For a type σ = (Gσ, θσ) we construct the basis B as follows. First construct

Γσ, the automorphism group of σ, whose elements are bijective maps α : [|σ|]→
[|σ|] such that (Gσ, θσα) is isomorphic to σ. The elements of Γσ act on σ-flags

in an obvious way: for α ∈ Γσ and σ-flag F = (GF , θF ) we define Fα to be the

σ-flag (GF , θFα). Define subspaces

RFσ+
m = {L ∈ RFσm : Lα = L ∀α ∈ Γσ}

and

RFσ−m = {L ∈ RFσm :
∑
α∈Γσ

Lα = 0}.

Below we describe how to find bases B+,B− for these subspaces. By the con-

struction of these bases it will be clear that RFσm = RFσ+
m ⊕RFσ−m . Finally we

will verify that for all B+ ∈ B+ and B− ∈ B− we have JB+B−Kσ = 0.

We start with the canonical basis for RFσm given by Fσm = {F1, F2, . . . , Ft}.
For each Fi ∈ Fσm define the orbit of Fi under Γσ by

FiΓσ = {Fα : α ∈ Γσ}.

Any two orbits are either equal or disjoint. Suppose there are u distinct orbits:

O1, . . . , Ou. For i ∈ [u] let B+
i =

∑
F∈Oi F . Then B+ = {B+

1 , . . . , B
+
u } is easily

seen to be a basis for RFσ+
m . Moreover if Oi = {Fi1 , . . . , Fiq} then Fi1 − Fiz ∈
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RFσ−m for 2 ≤ z ≤ q and the union of all such vectors forms a basis B− for

RFσ−m .

We now need to check that if B+ ∈ B+ and B− ∈ B− then JB+B−Kσ = 0.

If B− ∈ B− then by construction B− = Fbα−Fb for some Fb ∈ Fσm and α ∈ Γσ.

Moreover B+α = B+. Hence, by linearity,

JB+B−Kσ = JB+(Fbα− Fb)Kσ = J(B+α)(Fbα)−B+FbKσ.

We observe that for any Fa ∈ Fσm

J(Faα)(Fbα)Kσ = (Eθ∈ΘH [p(Fa, Fb, θα
−1;H)] : H ∈ H)

= (Eθ∈ΘHα−1 [p(Fa, Fb, θ;H)] : H ∈ H)

where ΘHα
−1 = {θα−1 : θ ∈ ΘH}. Since ΘHα

−1 = ΘH we must have

J(Faα)(Fbα)Kσ = JFaFbKσ. Thus, since B+ = Fa1 + Fa2 + · · · + Fas , we have

J(B+α)(Fbα)−B+FbKσ = 0, and hence JB+B−Kσ = 0.

2.3 Hypergraphs do jump

We say that α ∈ [0, 1) is a jump for an integer r ≥ 2 if there exists c(α) > 0

such that for all ε > 0 and all t ≥ 1 there exists n0(α, ε, t) such that any r-graph

with n ≥ n0(α, ε, t) vertices and at least (α + ε)
(
n
r

)
edges contains a subgraph

on t vertices with at least (α + c)
(
t
r

)
edges.

The Erdős–Stone–Simonovits theorem [13], [14] implies that for r = 2 every

α ∈ [0, 1) is a jump. Erdős [10] showed that for all r ≥ 3, every α ∈ [0, r!/rr)

is a jump. Note that r!/rr is the asymptotic density of an equally partitioned

r-partite r-graph. Erdős went on to make his famous “jumping constant con-

jecture” that for all r ≥ 3, every α ∈ [0, 1) is a jump. Frankl and Rödl [18]

disproved this conjecture by giving a sequence of values of non-jumps for all

r ≥ 3. More recently a number of authors have given more examples of non-

jumps for each r ≥ 3 in the interval [5r!/2rr, 1) (see [17] for example). However

nothing was previously known regarding the location of jumps or non-jumps in

the interval [r!/rr, 5r!/2rr) for any r ≥ 3.

We give the first examples of jumps for any r ≥ 3 in the interval [r!/rr, 1).

Theorem 2.3.1. If α ∈ [0.2299, 0.2316) then α is a jump for r = 3.
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In order to explain our proof we require some definitions and a theorem of

Frankl and Rödl [18].

Let F be an r-graph with vertex set [n] = {1, 2, . . . , n} and edge set E(F ).

Define

Sn = {(x1, . . . , xn) ∈ Rn :
n∑
i=1

xi = 1, xi ≥ 0}.

For x ∈ Sn let

λ(F, x) =
∑

{i1,i2,...,ir}∈E(F )

r!xi1xi2 · · ·xir .

The Lagrangian of F is defined to be

λ(F ) = max
x∈Sn

λ(F, x).

We say that α is threshold for F if π(F) ≤ α.

Theorem 2.3.2 (Frankl and Rödl [18]). The following are equivalent:

(i) α is a jump for r.

(ii) α is threshold for a finite family F of r-graphs satisfying

min
F∈F

λ(F ) > α.

We can prove (i) implies (ii), by considering the family

F = {F : |V (F )| = t, d(F ) ≥ α + c/2}

where t is some sufficiently large integer. Erdős [10] tells us that the Turán

density of a hypergraph is the same as that of its “blow-ups” which proves (ii)

implies (i).

Let Fr be the r-graph consisting of a single edge. Since any α ∈ [0, 1) is

threshold for Fr and λ(Fr) = r!/rr, Theorem 2.3.2 trivially implies Erdős’ result

[10] that for each r ≥ 3, every α ∈ [0, r!/rr) is a jump for r.

The original version of Erdős’ jumping constant conjecture asserted that

r!/rr is a jump for every r ≥ 3. This fascinating problem is still open, even for

r = 3. Erdős speculated [10] that 3!/33 = 2/9 was threshold for the following
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family of 3-graphs F∗ = {F1, F2, F3}, where

F1 = {123, 124, 134}, F2 = {123, 124, 125, 345}, F3 = {123, 124, 235, 145, 345}.

It is straightforward to check that λ(F1) = 8/27, λ(F2) = 189+15
√

5
961

and λ(F3) =

6/25. Since min1≤i≤3 λ(Fi) = λ(F2) > 2/9, if 2/9 were threshold for F∗ then

Theorem 2.3.2 would imply 2/9 is a jump for r = 3.

Unfortunately Erdős’ suggestion is incorrect: 2/9 is not threshold for F∗.
There exist seven vertex 3-graphs that are F∗-free with Lagrangians greater

than 2/9. By taking appropriate “blow-ups” of such 3-graphs we find that

π(F∗) > 2/9. (To be precise we could take blow-ups of F4, defined below, to

show that π(F∗) ≥ 0.2319.) However Erdős’ idea suggests a natural approach to

proving that 2/9 is a jump for r = 3. Let F ′ be a family of 3-graphs containing

F1, F2, F3 with the property that minF∈F ′ λ(F ) > 2/9. If we can show that 2/9

is threshold for F ′ then (by Theorem 2.3.2) 2/9 is a jump for r = 3.

A search of all 3-graphs with at most seven vertices yields the following two

additional 3-graphs which we can add to F ′

F4 = {123, 135, 145, 245, 126, 246, 346, 356, 237, 147, 347, 257, 167},

F5 = {123, 124, 135, 145, 236, 346, 256, 456, 247, 347, 257, 357, 167}.

It is easy to check that λ(F4) ≥ 0.2319 > λ(F2) (to see this set x1 = x2 = x3 =

0.164, x4 = 0.154, x5 = x6 = x7 = 0.118) and λ(F5) ≥ λ(F2) (set µ = 18−3
√

5
31

,

x1 = x6 = x7 = µ/3, x2 = x3 = x4 = x5 = (1− µ)/4).

We can now ask: is it true that 2/9 is threshold for F ′ = {F1, F2, F3, F4, F5}?
Unfortunately this is still false, there exist 3-graphs on eight vertices avoiding all

members of F ′ and with Lagrangians greater than 2/9. By taking appropriate

“blow-ups” of such 3-graphs we can show that π(F ′) > 2/9. Moreover, by

considering eight vertex 3-graphs, numerical evidence suggests that if 2/9 is a

jump then the size of the jump is extremely small: c(2/9) ≤ 0.00009254.

However, although 2/9 is not threshold for F ′ we can show the following

upper bound on the Turán density of F ′.

Lemma 2.3.3. The Turán density of F ′ satisfies π(F ′) ≤ 0.2299.

Since 0.2299 < minF∈F ′ λ(F ) = λ(F2) = 0.2316, Theorem 2.3.1 is an imme-

diate corollary of Lemma 2.3.3 and Theorem 2.3.2.
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Proof. To prove π(F ′) ≤ 0.2299, we use Razborov’s flag algebras method as

outlined in Section 2.2. We set l = 7, so H consists of all seven vertex 3-

graphs that do not contain any F ∈ F ′, up to isomorphism. There are 4042

such 3-graphs, which are explicitly determined by the C++ program Density-

Bounder, see Appendix B. To calculate the coefficients cH we take six choices of

(σi,mi, Qi). The types are σi = ((Vi, Ei), θi), where

V1 = [1], E1 = ∅,

V2 = [3], E2 = ∅,

V3 = [3], E3 = {123},

V4 = [5], E4 = {123, 124, 135},

V5 = [5], E5 = {123, 124, 345},

V6 = [5], E6 = {123, 124, 135, 245},

and θi : [|Vi|] → Vi, maps x 7→ x. Ideally we would use all types of size at

most l − 2 = 5, however this yields a computationally intractable semidefinite

program. Our actual choice was made by experiment, in each case taking the

value of mi = b(7 + |σi|)/2c. DensityBounder determines the positive semidef-

inite matrices Qi by creating a semidefinite programming problem. Several

implementations of semidefinite program solvers exist. We chose the CSDP

library [5] to solve the problem. The CSDP library uses floating point arith-

metic which may introduce rounding errors. DensityBounder takes the output

of the CSDP program and uses it to construct the Qi (removing any rounding

errors). Our results can however be verified without needing to solve a semidef-

inite program: DensityBounder can load pre-computed matrices Qi from the file

HypergraphsDoJump.soln which can be found on the accompanying CD-ROM,

see Appendix B.

For each H ∈ H, d(H) and cH are calculated by DensityBounder which it

then uses to show that 0.2299 is an upper bound for π(F ′). Note that although

floating point operations are used by the semidefinite program solver, our final

computer proof consists of positive semidefinite matrices with rational coeffi-

cients and our proof can be verified using only integer operations, thus there is

no issue of numerical accuracy.

The program DensityBounder can be used to calculate upper bounds on the
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Turán density of other families of 3-graphs. The conjectured value of π(K−4 )

is 2/7 = 0.2857. Razborov [31] showed that π(K−4 ) ≤ 0.2978. Using Density-

Bounder we obtain a new upper bound of 0.2871 by taking l = 7 and considering

the following four types σi = ((Vi, Ei), θi) with the given values of mi (in each

case θi is the identity map):

V1 = [3], E1 = ∅, m1 = 5,

V2 = [3], E2 = {123}, m2 = 5,

V3 = [4], E3 = {123}, m3 = 5,

V4 = [5], E4 = {123, 124, 125}, m4 = 6.

As before the positive semidefinite matrices Qi are determined by solving a

semidefinite programming problem.

Theorem 2.3.4. Let K−4 be the 3-graph on four vertices with three edges. The

Turán density of K−4 satisfies

0.2857 . . . =
2

7
≤ π(K−4 ) ≤ 0.2871.

As with our main result our computations can be verified without any float-

ing point operations so there is no issue of numerical accuracy in these results.

Theorem 2.3.4 yields a second new interval of jumps for r = 3.

Corollary 2.3.5. If α ∈ [0.2871, 8/27) then α is a jump for r = 3.

Proof. Since λ(K−4 ) = 8/27, this follows directly from Theorem 2.3.4 and The-

orem 2.3.2.

2.3.1 Open problems

We have shown that [0.2299, 0.2316) is an interval of jumps for r = 3. If we

were able to compute π(F ′) precisely we could quite possibly extend this interval

below 0.2299. However, as noted in the introduction, we know that π(F ′) > 2/9

so our approach could never resolve the most important open question in this

area: is 2/9 a jump?

Indeed the question of whether 2/9 is a jump for r = 3 seems remarkably

difficult to resolve. If 2/9 is a jump then the size of this jump is very small

and so to give a proof along the same lines as the proof of Theorem 2.3.1 would

appear to require a very precise approximation of the Turán density of some
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unknown family of 3-graphs. On the other hand the only current technique for

showing a value is not a jump is to follow the method of Frankl and Rödl [18],

but this trivially fails for 2/9 (or indeed r!/rr for any r ≥ 3).

Another obvious open problem is to compute π(K−4 ) exactly. It is likely that

improvements over our bound of 0.2871 could be made by applying Razborov’s

method with larger flags.

2.4 Some exact Turán densities

2.4.1 Introduction

Goldwasser [19] proved that π(S1) = 3/4, where

S1 = {234, 125, 135, 145, 126, 136, 146, 256, 356, 456}.

It is easy to prove π(S1) ≥ 3/4 by noting that S1 is not 2-colourable (i.e. no

matter how we colour the vertices with two colours we cannot avoid having a

monochromatic edge). Hence S1 does not appear as a subgraph in a complete

bipartite 3-graph (a 3-graph with two vertex classes where the only edges miss-

ing are those that would lie entirely in one vertex class). If we choose the vertex

classes as equally as possible the complete bipartite 3-graph has an asymptotic

density of 3/4, therefore π(S1) ≥ 3/4.

A natural question to ask is what other 3-graphs have a Turán density of

3/4 and a complete bipartite construction as an extremal example. With this

in mind we compiled a list of all non-2-colourable 3-graphs on six vertices which

are edge minimal. There are six such graphs up to isomorphism, one of which

is S1. Using Razborov’s flag algebra method we will prove five of these graphs

have a Turán density of 3/4 (reproving π(S1) = 3/4). The remaining graph

is K
(3)
5 with an extra isolated vertex. We were not able to calculate its Turán

density exactly but we can prove π(K
(3)
5 ) ≤ 0.76954 which beats the previously

best known bound of 649/816 = 0.79534 due to Markström [27].
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Theorem 2.4.1. π(S1) = π(S2) = π(S3) = π(S4) = π(S5) = 3/4, where

S1 = {234, 125, 135, 145, 126, 136, 146, 256, 356, 456},

S2 = {123, 134, 145, 156, 162, 235, 346, 452, 563, 624},

S3 = {234, 235, 145, 126, 136, 246, 346, 256, 356, 456},

S4 = {234, 135, 145, 245, 126, 146, 346, 256, 356, 456},

S5 = {234, 235, 145, 345, 136, 246, 346, 256, 356, 456}.

Interestingly Frankl and Füredi [16] showed that a blow-up of S2 has the

maximum density of any 3-graph in which any four vertices span exactly zero

or two edges.

Proof. A lower bound of 3/4 can be proved for all five graphs by considering a

bipartite construction.

To prove the upper bounds of 3/4 we use Razborov’s flag algebra method as

described in the previous sections. One of the matrices involved has over 2000

entries and as such we exclude the details of the calculations. The files S1.txt,

. . . , S5.txt (see Appendix C) contain all the necessary information such as the

types, flags, matrices, and the basis the matrices are written in. The calculations

are too long to do by hand so we provide the program DensityChecker (see

Appendix C). It reads in the text files and based on the information the files

contain, the program calculatesH, checks the matrices are positive semidefinite,

and calculates the upper bounds. The calculations are done entirely using

integers so no rounding errors can occur.

Theorem 2.4.2. 3/4 ≤ π(K
(3)
5 ) ≤ 0.76954.

Proof. The lower bound can be shown by considering a bipartite construction.

The upper bound was proved using Razborov’s flag algebras. The specific data

can be found on the CD-ROM in the file K5.txt. The program DensityChecker

(see Appendix C) can be used to verify the bound is 0.76954.

In the next section we describe more of Razborov’s method. In particular

we explain how to turn an approximate solution returned by a computer into

an exact solution which precisely determines the Turán density.
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2.4.2 Making approximate solutions exact

In order to bound the Turán density of a family of graphs F , we use pro-

grams which employ floating point arithmetic to efficiently solve the underlying

semidefinite programming problem. However floating point arithmetic intro-

duces small rounding errors and so the solutions these solvers return are in fact

only approximate solutions. Razborov [31] explains how to make an approxi-

mate solution precise using information contained in the (conjectured) extremal

examples. We will spend the rest of this section describing this method, and

extending it to cover the case when the extremal examples are unknown or do

not provide sufficient information to make the solution exact.

Our aim is to perturb the entries of the matrices (given by a close approx-

imate solution) in such a way that we do not violate the condition that the

matrices are positive semidefinite and that cH + d(H) ≤ π(F) holds for all

H ∈ H. In general there will be many exact solutions, which is precisely why

such a move from an approximate to an exact solution is possible. However,

all the exact solutions share certain properties. It will be important to identify

these properties if we are to have any chance of modifying the approximate

solution to an exact one.

The sharpness property: We require cH + d(H) ≤ π(F) for all H ∈ H in

an exact solution. Let us call those values of cH + d(H) which will equal π(F)

in the exact solution the sharp values, and those which will be strictly less than

π(F) non-sharp. As we will see certain cH + d(H) must be sharp regardless of

the exact solution we move to. Hence it is important to identify precisely which

values of cH + d(H) will be sharp in our exact solution.

The positive definite property: If an n× n matrix is positive definite with min-

imum eigenvalue λmin > 0, then changing all entries by less than λmin/n will

result in a matrix which is still positive definite. Therefore if the matrices given

by the approximate solution were all positive definite we could use this fact to

change the approximate solution slightly, without affecting the positive definite

property of the matrices.

We can make the matrices given by the approximate solution positive def-

inite by modifying the bases, see Section 2.4.2.2. Once this is done our aim is

to make a small change to the approximate solution which leaves the matrices
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positive definite and makes the solution exact. If successful we ultimately end

up with an exact solution whose matrices are all positive definite in the modified

bases. Hence the key idea is to find a modification of the bases such that the

matrices in the exact solution will be positive definite. Providing the approx-

imate and exact solutions are close, the matrices in the approximate solution

will automatically be positive definite under these new bases.

Next we will discuss how we determine these properties and utilize them.

2.4.2.1 The sharpness property

If the approximate and exact solution are sufficiently close to each other then

the non-sharp values will be less than π(F) in the approximate solution. Fur-

thermore we can assume that only a small change in the matrix entries of the

approximate solution is needed to make the sharp values equal π(F). If this

change is small enough then the non-sharp values will not have changed suf-

ficiently to be larger than π(F), (and the matrices will still remain positive

definite). Hence we only need worry about identifying the sharp values and

making them π(F).

We can identify some sharp values by considering extremal examples. Any

H which appears with positive probability in any extremal example must nec-

essarily have cH + d(H) = π(F) in an exact solution.

Lemma 2.4.3. Given {Gn} a sequence of F-free graphs of increasing order,

such that d(Gn)→ π(F), and p(H;Gn) converges for all H ∈ H. Let us define

p(H;G∞) to be the value p(H;Gn) converges to. Then for any exact solution,

p(H;G∞) > 0 implies cH + d(H) = π(F).

Proof. We know

d(Gn) ≤
∑
H∈H

(cH + d(H))p(H;Gn) + o(1).

Taking the limit as n tends to infinity, we get

π(F) ≤
∑
H∈H

(cH + d(H))p(H;G∞).

In an exact solution cH + d(H) ≤ π(F) for all H ∈ H. It is easy to check
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p(H;G∞) ≥ 0 for all H ∈ H and that
∑

H∈H p(H;G∞) = 1. Consequently∑
H∈H

(cH + d(H))p(H;G∞) ≤ π(F)

with equality only when cH + d(H) = π(F) for all H ∈ H with p(H;G∞) 6=
0.

In fact, assuming that the sharp values were given precisely by considering

the subgraphs which appear in the bipartite construction was enough for the

proofs of π(Si) = 3/4 for i = 1, . . . , 5. In general there may be sharp values

which cannot be determined in this way, for example there may be extremal

constructions of which we are unaware. In such cases we can often determine

which values are likely to be sharp by considering which values are very close

to π(F) in the approximate solution.

Once the sharp values have been determined, or guessed, we need to modify

the matrix entries to make them equal to π(F). The outline of the procedure

to move to an exact solution is given below.

• First we change the bases of the matrices as described in Section 2.4.2.2.

This ensures after we modify the matrix entries the matrices remain pos-

itive definite.

• Next we take the entries of the matrices (ignoring the entries below the

main diagonals) and form a vector which represents the approximate so-

lution.

• We then solve a linear system of equations to find all such vectors that

represent solutions in which all the sharp values equal π(F) (irrespective

of whether the non-sharp values are less than π(F)).

• We now have a linear space of solutions and we wish to find the point in

this space which is closest to the point given by the approximate solution.

We choose to define closeness via the Euclidean metric as this allows us

to find the closest point by solving another linear system of equations.

• Once we have the closest point we can convert it back into a series of

matrices, which will have the property that the sharp values are π(F)

and it is a small perturbation from the approximate solution. (Rather
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than take the closest point often we take a point close to the closest point

in order to produce matrices with simpler entries.)

• After we make this modification to the approximate solution we need

to check the change wasn’t so large that the non-sharp values are now

larger than π(F) or that the matrices are not positive semidefinite. If the

change is too large, then it indicates either the approximate solution is

too inaccurate, or the choice of sharp values was incorrect.

2.4.2.2 The positive definite property

In order for us to make small changes to the approximate solution to get to an

exact solution it is necessary that we modify the bases the matrices are written

in, so that the matrices appear positive definite in the exact solution.

Suppose we are given an exact solution. We can rewrite the bases of the

matrices so that the matrices in the exact solution become diagonal, with the

eigenvalues down the diagonal. In order to make the exact solution’s matrices

positive definite we simply remove the bases elements corresponding to the

zeros in the diagonals, and remove the respective rows and columns from the

matrices. (It is easy to check that doing this will not affect the bound the exact

solution gives.) If we rewrite the matrices in the approximate solution in the

new bases, and remove the same basis elements, we may affect the bound the

approximate solution gives. However, providing the approximate solution was

close to the exact solution the change will be small. Another consequence of

the closeness of the exact and approximate solutions is that the new matrices

in the approximate solution will now automatically be positive definite.

In general we do not need to find bases that diagonalize the matrices, doing

so would require us to find all the eigenvectors of the matrices. It is sufficient to

just determine the 0-eigenvectors (the eigenvectors whose corresponding eigen-

value is zero). We can modify the bases so that the 0-eigenvectors do not lie in

the space the bases span, and this is enough to ensure that the matrices will be

positive definite. We can determine some of these 0-eigenvectors by considering

extremal examples.

Given {Gn} a sequence of F -free graphs of increasing order, such that

d(Gn) → π(F), and p(H;Gn) → p(H;G∞) for all H ∈ H. Then for any
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exact solution ∑
H∈H

(cH + d(H))p(H;G∞) = π(F).

and since
∑
d(H)p(H;G∞) = π(F), we have

∑
cHp(H;G∞) = 0. This implies

terms of the form Eθ∈Θ[pTθQpθ] tend to zero. Generally rather than pθ =

(p(F, θ;G) : F ∈ Fσm) we often have a more complicated basis as outlined

in Section 2.2.3. Let us call this basis bθ,n and its elements consist of linear

combinations of p(F, θ;Gn) terms, where F ∈ Fσm, θ ∈ Θn, and Θn is the

set of all injective functions from [|σ|] to V (Gn). Informally, if with positive

probability a random bθ,∞ looks like b in an extremal example then b is a

0-eigenvector of Q.

Lemma 2.4.4. Given a vector b 6= 0 and a function ε(n) > 0 that tends to

zero. If the proportion of θ ∈ Θn which satisfies ‖b− bθ,n‖∞ ≤ ε(n) converges

to a strictly positive quantity, then b is an eigenvector with eigenvalue zero for

Q in an exact solution.

Proof. In an exact solution Eθ∈Θn [bTθ,nQbθ,n] tends to zero. If bTQb > 0, then

Eθ∈Θn [bTθ,nQbθ,n] must necessarily tend to a positive quantity. Hence we must

have bTQb = 0. Since Q is a real symmetric matrix, it can be written in the

form RTDR where R is an orthogonal matrix and D is a diagonal matrix whose

diagonal elements are the eigenvalues of Q. Since Q is positive semidefinite, all

its eigenvalues are non-negative and so Q can be written as RTMTMR, where

M is a diagonal matrix whose diagonal elements are the square root of those

in D. Hence bTQb = (MRb)T (MRb) = 0 which implies MRb = 0 and thus

Qb = 0.

Considering such b in the bipartite extremal example was enough to find

the 0-eigenvectors for the matrices when proving π(Si) = 3/4 for i = 1, . . . , 5.

However, some 0-eigenvectors may not be deducible this way, for example we

may not know all the extremal examples. In such cases we can again look at

the approximate solution to help us guess what the 0-eigenvectors should be.

We outline the procedure below:

1. First we take the matrix Q (from our approximate solution) and calculate

its eigenvalues and corresponding eigenvectors.

2. We assume the eigenvalues close to zero would be zero in an exact solution.

Let us call the corresponding eigenvectors the approximate vectors. The
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space spanned by the approximate vectors we assume is an approximation

of the space spanned by the 0-eigenvectors in the exact solution.

3. We take one of our approximate vectors and find its component which has

the largest absolute value, say it is in position i.

4. We then divide all its components by the ith component.

5. Next we subtract multiples of this vector from all the other approximate

vectors, so that the ith component is zero in all other approximate vectors.

6. We repeat steps 3-5 for the other approximate vectors. This gives us a

new basis for the approximated space.

7. Making the assumption that the 0-eigenvectors have simple rational com-

ponents allows us to guess them from the modified approximate vectors.

We give the following example to illustrate this algorithm, and the process

of making a matrix positive definite given the 0-eigenvectors. Let us take the

matrix

Q =


0.5228 −0.1845 0.0923 0.4612

−0.1845 1.1070 −0.5535 0.1846

0.0923 −0.5535 0.2767 −0.0920

0.4612 0.1846 −0.0920 0.5227

 .

Its eigenvalues are 1.4452, 0.9840, 0.0002, and −0.0002. We will assume that the

eigenvalues 0.0002 and −0.0002 would correspond to the zero eigenvalues in an

exact solution. Their corresponding eigenvectors (the approximate vectors) are

v1 =


−0.5534

0.1210

0.6108

0.5532

 ,v2 =


0.4153

0.4684

0.6599

−0.4156

 .
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Applying steps 3-5 to v1 leaves the approximate vectors as

v1 =


−0.9060

0.1981

1

0.9057

 ,v2 =


1.0132

0.3377

0

−1.0133

 .

Repeating steps 3-5 for v2, gives

v1 =


−0.0004

0.4999

1

0

 ,v2 =


−0.9999

−0.3333

0

1

 .

Assuming the components are simple rational values we would guess the 0-

eigenvectors to be

v1 =


0

1/2

1

0

 ,v2 =


−1

−1/3

0

1

 .

Now we will make the matrix positive definite by modifying the basis. By

combining v1,v2 with v3 = (1, 0, 0, 0)T and v4 = (0, 1, 0, 0)T (two independent

vectors) we can form a new basis. Let R be a matrix representing the new basis

i.e.

R =


0 −1 1 0

1/2 −1/3 0 1

1 0 0 0

0 1 0 0

 and hence R−1 =


0 0 1 0

0 0 0 1

1 0 0 1

0 1 −1/2 1/3

 .

We can rewrite Q = (R−1)TQ′R−1, where

Q′ = RTQR =


−0.0001 0.0003 0.0001 0

0.0003 0.0001 −0.0001 0.0001

0.0001 −0.0001 0.5228 −0.1845

0 0.0001 −0.1845 1.1070

 .
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In order to make the matrix in the exact solution positive definite we would

remove columns 1, 2 and rows 1, 2 from Q′ as these are associated with the

0-eigenvectors v1,v2. Hence

Q ≈


1 0

0 1

0 −1/2

1 1/3


(

0.5228 −0.1845

−0.1845 1.1070

)(
1 0 0 1

0 1 −1/2 1/3

)
.

The 2 by 2 matrix in the above expression is positive definite (as intended), and

modifying its entries would hopefully lead to an exact solution. (The 4 by 2

and 2 by 4 matrices represent the change in basis.)

2.4.3 Open problems

We have shown π(S1) = π(S2) = π(S3) = π(S4) = π(S5) = 3/4, however we

were not able to calculate π(K
(3)
5 ) precisely. An obvious open problem is to

show π(K
(3)
5 ) = 3/4, which may be possible to prove using the method we have

described in this section and the use of larger flags.

The central problem in this area is Turán’s conjecture that π(K
(3)
4 ) = 5/9.

Razborov [31] managed to prove π(K
(3)
4 ) ≤ 0.561666, which is very close to the

conjectured value. This bound may also be improved through the use of larger

flags.

2.5 Hypercube results

2.5.1 Introduction

In the following sections we will extend Razborov’s method from hypergraphs

to hypercubes. An n-dimensional hypercube Qn is a 2-graph with 2n vertices.

Setting V (Qn) = {0, 1, . . . , 2n − 1} we can define E(Qn) as follows: v1v2 ∈
E(Qn) if and only if v1 differs from v2 by precisely one digit in their binary

representations. For example E(Q2) = {01, 02, 13, 23}. It is easy to see that

the binary representations of the vertices indicate the coordinates of the vertices

of a unit hypercube in Rn. Let us also define the layers of a hypercube which

will be useful later. Layer m of Qn consists of all vertices in V (Qn) which have

75



m digits that are one in their binary representations. For example in Q3, layer

0 = {0}, layer 1 = {1, 2, 4}, layer 2 = {3, 5, 6}, and layer 3 = {7}.
We will consider two different types of Turán problems involving hypercubes.

In the first type we will be interested in the following question: given a forbidden

family of graphs F , what is the maximum number of edges an F -free subgraph

of Qn can have? We are particularly interested in the limit of the maximum

hypercube edge density as n tends to infinity, where we define the hypercube edge

density of a subgraph G of Qn to be |E(G)|/|E(Qn)|. We will refer to the limit

as the edge Turán density πe(F), a simple averaging argument shows it always

exists.

Motivation to study the edge Turán density comes from Erdős [11] who

conjectured that πe(Q2) = 1/2. It is easily seen that πe(Q2) ≥ 1/2 by taking

Qn and removing those edges that have one vertex in layer 2r−1 and the other

in layer 2r for each r. Such subgraphs of Qn are Q2-free and contain exactly

half the edges. The densest known constructions which are Q2-free are given by

Brass, Harborth, and Nienborg [6], and they have a hypercube edge density of

approximately (1 + 1/
√
n)/2. Chung [8] showed that πe(Q2) ≤ (2 +

√
13)/9 =

0.62284, her argument was extended by Thomason and Wagner [32] using a

computer, to get the currently best known bound of 0.62256. By extending

Razborov’s flag algebra technique to hypercubes we will prove a significantly

smaller upper bound of 0.60680. Chung [8] also considered the edge Turán

density of 6-cycles, and proved 1/4 ≤ πe(C6) ≤
√

2 − 1 = 0.41421. We will

improve the upper bound to 0.37550.

The second type of hypercube Turán problem we will look at is very similar

to the first but focuses on the density of vertices rather than edges. In the second

type we are interested in the following question: given a forbidden family of

graphs F , what is the maximum number of vertices an F -free induced subgraph

of Qn can have? We are particularly interested in the limit of the maximum

hypercube vertex density as n tends to infinity, where we define the hypercube

vertex density of an induced subgraph G of Qn to be |V (G)|/|V (Qn)|. We will

refer to the limit as the vertex Turán density πv(F), again a simple averaging

argument shows it always exists.

The analogous problem to Erdős’ conjecture is calculating πv(Q2). E.A.

Kostochka [24] and independently Johnson and Entringer [23] showed that

πv(Q2) = 2/3. Johnson and Talbot [22] proved that πv(R1) = 2/3, where

76



R1 is the graph formed by removing vertices 0 and 1 from Q3. By extend-

ing Razborov’s flag algebra method we will prove πv(R2) = 2/3, where R2 is

the graph formed by removing a single vertex from Q3. The value of πv(Q3),

however, still remains undetermined. A lower bound of 3/4 is easily achieved

by considering the induced subgraphs of Qn formed by removing all vertices in

layers that are a multiple of four (i.e. layers 0, 4, 8, . . .). Although we could not

show πv(Q3) ≤ 3/4 we will prove πv(Q3) ≤ 0.76900. We will also show that

1/2 ≤ πv(C6) ≤ 0.53111.

2.5.2 Edge Turán density

Calculating the edge Turán density involves looking at subgraphs of hypercubes.

However, the structure of the hypercubes may not be retained by the subgraphs.

This structure will prove to be useful and will simplify definitions later. Hence

rather than work directly with subgraphs we will instead use edge-coloured hy-

percubes that represent subgraphs of Qn. In particular we will colour the edges

red and blue. The subgraph a red-blue edge-coloured hypercube represents can

be constructed by removing those edges that are coloured red and keeping those

edges that are blue. Erdős’ conjecture [11] that πe(Q2) = 1/2 comes from asking

what is the maximum number of edges a Q2-free subgraph of Qn can have. It

should be clear that this is equivalent to asking what is the maximum number

of blue edges an edge-coloured Qn can have such that it does not contain a blue

Q2. Therefore the problem of calculating πe(Q2), and πe(F) in general, can be

translated into a problem involving forbidding edge-coloured hypercubes in an

edge-coloured Qn. We will define the equivalent notion of edge Turán density

for edge-coloured hypercubes shortly, but first we need some definitions.

We will use the notation (n, κ)e to represent an edge-coloured Qn, where

κ : E(Qn) → {red, blue}. We define V (F ) and E(F ) for an edge-coloured

hypercube F = (n, κ)e to be V (Qn) and E(Qn) respectively. Consider two

edge-coloured hypercubes F1 = (n1, κ1)e, and F2 = (n2, κ2)e. We say F1 is

isomorphic to F2 if there exists a bijection f : V (F1) → V (F2) such that for

all v1v2 ∈ E(F1), f(v1)f(v2) ∈ E(F2) and κ1(v1v2) = κ2(f(v1)f(v2)). We say

F1 is a subcube of F2 if there exists an injection g : V (F1) → V (F2) such

that for all v1v2 ∈ E(F1), g(v1)g(v2) ∈ E(F2) and if κ1(v1v2) = blue then

κ2(g(v1)g(v2)) = blue.
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The edge density of F = (n, κ)e is

de(F ) =
|{v1v2 ∈ E(F ) : κ(v1v2) = blue}|

|E(F )|
.

Note that this is analogous to the hypercube edge density defined in Section

2.5.1. Given a family of coloured hypercubes F , we sayH, a coloured hypercube,

is F-free if H does not contain a subcube isomorphic to any member of F . The

coloured edge Turán density of F is defined to be the following limit (a simple

averaging argument shows that it always exists)

πce(F) = lim
n→∞

max
κ
{de(H) : H = (n, κ)e and is F -free}.

Given these definitions it should be easy to see that πe(Q2) = πce(B) where

B is a Q2 with all four of its edges coloured blue. We are also interested in

πe(C6). It is not to difficult to show that all 6-cycles in Qn lie within a Q3

subgraph. There are two distinct 6-cycles in a Q3 up to isomorphism, their

edge sets are E1 = {01, 13, 32, 26, 64, 40}, and E2 = {51, 13, 32, 26, 64, 45}. Let

B1 be a Q3 with those edges in E1 coloured blue and the remaining edges

coloured red. Similarly let B2 be a Q3 with those edges in E2 coloured blue

and the remaining edges coloured red. Hence forbidding a blue edged 6-cycle in

an edge-coloured hypercube is equivalent to requiring that it is B1 and B2-free.

Therefore πe(C6) = πce(B1, B2). By extending Razborov’s flag algebra method

to edge-coloured hypercubes, we will be able to prove the following bounds on

πce(B) and πce(B1, B2).

Theorem 2.5.1. πe(Q2) = πce(B) ≤ 0.60680 and πe(C6) = πce(B1, B2) ≤
0.37550.

In the remainder of this section we will describe how to apply Razborov’s

flag algebra method to hypercubes.

Let F be a family of coloured hypercubes whose coloured edge Turán density

we wish to compute (or at least approximate). Let H be the family of all F -free

edge-coloured hypercubes of dimension l, up to isomorphism. If l is sufficiently

small we can explicitly determine H (by computer search if necessary). For

H ∈ H and a large F -free coloured hypercube G, we define p(H;G) to be the

probability that a random hypercube of dimension l from G induces a coloured

subcube isomorphic to H.
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Trivially, the edge density of G is equal to the probability that a random

Q1 (a single edge) from G is coloured blue. Thus, averaging over hypercubes of

dimension l in G, we can express the edge density of G as

de(G) =
∑
H∈H

de(H)p(H;G),

and hence πce(F) ≤ maxH∈H de(H). This “averaging” bound can be improved

upon by using flags and types just as we did in the hypergraph case.

For edge-coloured hypercubes we define flags and types as follows. A flag,

F = (GF , θ), is an edge-coloured hypercube GF together with an injective map

θ : {0, 1, . . . , 2s − 1} → V (GF ) such that θ(i)θ(j) ∈ E(GF ) if and only if i and

j differ by precisely one digit in their binary representations (i.e. θ induces a

canonically labelled hypercube). If θ is bijective (and so |V (GF )| = 2s) we call

the flag a type. For ease of notation given a flag F = (GF , θ) we define its

dimension dim(F ) to be the dimension of the hypercube underlying GF . Given

a type σ we call a flag F = (GF , θ) a σ-flag if the induced labelled and coloured

subcube of GF given by θ is σ.

Fix a type σ and an integer m ≤ (l + dim(σ))/2. (The bound on m en-

sures that an l-dimensional hypercube can contain two m-dimensional subcubes

overlapping in a dimension dim(σ) hypercube.) Let Fσm be the set of all F -free

σ-flags of dimension m, up to isomorphism. Let Θ be the set of all injective func-

tions from {0, 1, . . . , 2dim(σ) − 1} to V (G), that result in a canonically labelled

hypercube. Given F ∈ Fσm and θ ∈ Θ we define p(F, θ;G) to be the probability

that an m-dimensional coloured hypercube R chosen uniformly at random from

G subject to im(θ) ⊆ V (R), induces a σ-flag (R, θ) that is isomorphic to F .

If Fa, Fb ∈ Fσm and θ ∈ Θ then p(Fa, θ;G)p(Fb, θ;G) is the probability

that two m-dimensional coloured hypercubes Ra, Rb chosen independently at

random from G subject to im(θ) ⊆ V (Ra) ∩ V (Rb), induce σ-flags (Ra, θ),

(Rb, θ) that are isomorphic to Fa, Fb respectively. We define the related prob-

ability, p(Fa, Fb, θ;G), to be the probability that two m-dimensional coloured

hypercubes Ra, Rb chosen independently at random from G subject to im(θ) =

V (Ra) ∩ V (Rb), induce σ-flags (Ra, θ), (Rb, θ) that are isomorphic to Fa, Fb re-

spectively. It is easy to show that p(Fa, θ;G)p(Fb, θ;G) = p(Fa, Fb, θ;G) + o(1)

where the o(1) term vanishes as |V (G)| tends to infinity.

For H ∈ H let ΘH be the set of all injective maps θ : {0, 1, . . . , 2dim(σ)−1} →
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V (H) which induces a canonically labelled hypercube. Just as in Section 2.2.1

we have

Eθ∈Θ [p(Fa, θ;G)p(Fb, θ;G)] =
∑
H∈H

Eθ∈ΘH [p(Fa, Fb, θ;H)] p(H;G) + o(1),

by averaging over l-dimensional subcubes of G. The remainder of the argument

is identical to that in Section 2.2.1. By considering positive semidefinite ma-

trices Q we can use terms of the form Eθ∈Θ[pTθQpθ] to improve our bound on

πce(F). Choosing the optimal matrices Q can again be posed as a semidefinite

programming problem. The ideas presented in Sections 2.2.3 and 2.4 similarly

extend from hypergraphs to hypercubes.

Proof of Theorem 2.5.1. All the necessary data (types, flags, matrices, etc.)

needed to prove πce(B) ≤ 0.60680 can be found on the CD-ROM in the file

B.txt. The calculation that converts this data into an upper bound is too

long to do by hand and so we provide the program HypercubeEdgeDensity-

Checker to verify our claim (see Appendix D). Similarly the data needed to

prove πce(B1, B2) ≤ 0.37550 can be found in the file B1B2.txt on the CD-

ROM.

2.5.3 Vertex Turán density

When we looked at the edge Turán density problem we found that rather than

working directly with subgraphs of hypercubes it was simpler to use edge-

coloured hypercubes instead. Similarly when calculating the vertex Turán

density we will use red-blue vertex-coloured hypercubes to represent induced

subgraphs of hypercubes. The induced subgraph a vertex-coloured hypercube

represents can be constructed by removing precisely those vertices which are

red.

We will use the notation (n, κ)v to represent a vertex-coloured Qn, where

κ : V (Qn) → {red, blue}. We define V (F ) and E(F ) for a vertex-coloured

hypercube F = (n, κ)v to be V (Qn) and E(Qn) respectively. Consider two

vertex-coloured hypercubes F1 = (n1, κ1)v, and F2 = (n2, κ2)v. We say F1 is

isomorphic to F2 if there exists a bijection f : V (F1) → V (F2) such that for

all v1v2 ∈ E(F1), f(v1)f(v2) ∈ E(F2) and for all v ∈ V (F1), κ1(v) = κ2(f(v)).

We say F1 is a subcube of F2 if there exists an injection g : V (F1) → V (F2)
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such that for all v1v2 ∈ E(F1), g(v1)g(v2) ∈ E(F2) and for all v ∈ V (F1) if

κ1(v) = blue then κ2(g(v)) = blue.

The vertex density of F = (n, κ)v is

dv(F ) =
|{v ∈ V (F ) : κ(v) = blue}|

|V (F )|
.

Note that this is analogous to the hypercube vertex density defined in Section

2.5.1. Given a family of vertex-coloured hypercubes F , we say H, a vertex-

coloured hypercube, is F-free if H does not contain a subcube isomorphic to

any member of F . The coloured vertex Turán density of F is defined to be the

following limit (a simple averaging argument shows that it always exists)

πcv(F) = lim
n→∞

max
κ
{dv(H) : H = (n, κ)v and is F -free}.

Given these definitions it should be easy to see that πv(Q3) = πcv(B3), where

B3 is a Q3 with all its vertices coloured blue. It is also not hard to show that

forbidding R2 in Qn is equivalent to asking that a vertex-coloured hypercube

is B−3 -free, where B−3 is a Q3 with vertex 7 coloured red and the remaining

vertices coloured blue. Hence πv(R2) = πcv(B
−
3 ). As discussed in Section 2.5.2

all 6-cycles in Qn lie within a Q3 subgraph, and there are only two distinct

6-cycles in a Q3 up to isomorphism. These two 6-cycles can be represented

by B4 and B5, two vertex-coloured hypercubes of dimension three. Specifically

vertices 5 and 7 are coloured red in B4 and vertices 0 and 7 are red in B5 (the

remaining vertices are blue). Therefore πv(C6) = πcv(B4, B5). By extending

Razborov’s method to vertex-coloured hypercubes we will be able to prove the

following result.

Theorem 2.5.2. The following all hold:

(i) πv(R2) = πcv(B
−
3 ) = 2/3,

(ii) 3/4 ≤ πv(Q3) = πcv(B3) ≤ 0.76900,

(iii) 1/2 ≤ πv(C6) = πcv(B4, B5) ≤ 0.53111.

We omit the details of extending Razborov’s technique to vertex-coloured

hypercubes; it is virtually identical to the extension described in Section 2.5.2,

with the term “vertex-colouring” replacing the term “edge-colouring”.
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Proof of Theorem 2.5.2. The lower bound of 2/3 for πv(R2) is easily proved

by considering the induced subgraph of Qn formed by removing every third

layer of vertices. Similarly πv(Q3) ≥ 3/4 and πv(C6) ≥ 1/2 can be proved by

looking at Qn with every fourth layer removed and every second layer removed

respectively.

The upper bounds were calculated using Razborov’s flag algebra method

extended to vertex-coloured hypercubes. Specific data can be found in the

HypercubeVertexDensityChecker folder on the CD-ROM. The calculations

required to turn the data into upper bounds are too long to do by hand and

so we provide the program HypercubeVertexDensityChecker to verify our claims

(see Appendix D).

It is worth noting that the layered extremal example for πv(R2) = 2/3 did

not provide enough information to remove the floating point errors. Instead we

used the methods described in Section 2.4 to get the information directly from

an approximate solution.

2.5.4 Open problems

The study of Turán problems in hypercubes is largely motivated by Erdős’

conjecture that πe(Q2) = 1/2. This is perhaps the most interesting question

in the area, and still remains open. We have provided improvements on the

bounds of various edge and vertex Turán densities but were only able to calculate

πv(R2) exactly. Improving the bounds further to get exact results in any of the

problems discussed would be of interest. However, due to the exponential nature

of hypercubes this may prove to be computationally intractable to do via our

modified applications of Razborov’s method.
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Chapter 3

Almost Intersecting Families

that are Almost Everything

3.1 Introduction

An intersecting family is a family of sets F , such that for all A,B ∈ F we

have A ∩ B 6= ∅. For a, b ∈ [n] = {1, 2, 3, . . . , n} we define d(a, b) to be the

shortest distance from a to b in the usual cyclic ordering of [n]. A family of sets

F ⊂ P([n]) is almost intersecting if A,B ∈ F implies there exists a ∈ A, b ∈ B
such that d(a, b) ≤ 1. This is equivalent to the definition of G-intersecting given

by Bohman, Frieze, Ruszinkó, and Thoma in [1], when G is an n-cycle labelled

1, . . . , n in the usual way. In general given a graph G with vertex set V , we say

a family of sets F ⊂ P(V ) is G-intersecting, if A,B ∈ F implies there exists

a ∈ A and b ∈ B such that a = b or a is adjacent to b in G.

We are particularly interested in answering the following question: how large

can an almost intersecting family be if it is composed entirely of k-sets (sets of

size k), for some fixed k? This is motivated by the Erdős–Ko–Rado theorem

[12] which tells us how large an intersecting family of k-sets from [n] can be.

Theorem 3.1.1 (Erdős–Ko–Rado [12]). If F is an intersecting family of k-sets

from [n] and k ≤ n/2 then |F| ≤
(
n−1
k−1

)
.

Note that if k > n/2 then every pair of k-sets intersect, so the family of all

k-sets is an intersecting family. When k ≤ n/2 we can achieve an intersecting

family of size
(
n−1
k−1

)
by choosing all k-sets that contain a fixed element. We can

do something similar when looking at almost intersecting families. Instead of
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fixing one element let us fix two adjacent elements in the n-cycle, say 2 and

3. We can construct an almost intersecting family by choosing all k-sets that

contain either 2 or 3. The size of the family can be improved upon by also

including all sets that contain both 1 and 4 to create the almost intersecting

family

A∗ = {A ∈ [n] : 2 ∈ A, 3 ∈ A, or {1, 4} ⊆ A}.

Bohman, Frieze, Ruszinkó, and Thoma [1] conjecture that for large values

of n, the size of the largest almost intersecting family is |A∗| when k/n is small,

and almost
(
n
k

)
when k/n is large.

Conjecture 3.1.2 (Bohman, Frieze, Ruszinkó, and Thoma [1]). Let α(n, k) be

the size of the largest almost intersecting family in [n](k). There exists γ > 0

such that, for any fixed ε > 0,

α(n, k) =

|A∗|, if k ≤ (γ − ε)n,

(1− o(1))
(
n
k

)
, if k ≥ (γ + ε)n,

where the o(1) term tends to zero as n tends to infinity.

Note the similarity of this conjecture with the behaviour of intersecting

families. Bohman, Frieze, Ruszinkó, and Thoma [1] proved α(n, k) = |A∗|
when k = O(n1/4), and α(n, k) = (1− o(1))

(
n
k

)
when k > 0.318n. Bohman and

Martin [2] improved the bound for α(n, k) = |A∗| to k = O(
√
n). Johnson and

Talbot [21], showed that α(n, k) = (1−o(1))
(
n
k

)
when k > 0.266n. Furthermore

they conjectured that 0.266 . . . (the root of a quartic equation) was the threshold

value γ.

We show in the next section that the bound for attaining almost all k-sets

can be lowered from 0.266 to 1/4, disproving the conjecture of Johnson and

Talbot. We then generalize our argument to G-intersecting families, where G

is the p-th power of a cycle. Finally we extend our result to cross-intersecting

families.
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3.2 A bound on large almost intersecting f-

amilies

In this section we will prove our main result: that we can construct an al-

most intersecting family of k-sets that is almost everything when k/n > 1/4.

Throughout this section we will assume that k varies with n.

Theorem 3.2.1. Let α(n, k) be the size of the largest almost intersecting family,

of k-sets, on the n-cycle. For any fixed ε > 0, if k/n ≥ 1/4 + ε then

α(n, k) = (1− o(1))

(
n

k

)
.

Before we start the proof we need to make a few definitions and prove a

few lemmas. We begin by defining runs and gaps and then we will write the

property of almost intersection in a way which makes use of these concepts.

Definition 3.2.2 (Extended Neighbourhood). Given a set A we define its ex-

tended neighbourhood N(A), to be the union of A and its neighbours. Therefore

two sets A and B almost intersect if and only if A ∩N(B) 6= ∅.

Definition 3.2.3 (Run). We define a run to be a set of consecutive points that

are in the extended neighbourhood of a set. Thus the extended neighbourhood of

a set is the union of its runs. Furthermore let us define a t-run to be a run of

size t which is not a proper subset of a larger run. See Figure 3.1.

Definition 3.2.4 (Gap). We define a gap to be a set of consecutive points that

do not lie in a given set. Note that the complement of a set is the union of its

gaps. Additionally we define a t-gap to be a gap of size t which is not a proper

subset of a larger gap. See Figure 3.1.

Lemma 3.2.5. Two sets A and B almost intersect if and only if the intersection

of their respective extended neighbourhoods contain two adjacent points.

Proof. Throughout this proof we will refer to the two neighbours of any given

vertex v from the cycle as v − 1 and v + 1.

Let us first prove that if A and B almost intersect then N(A)∩N(B) contains

two adjacent points. If A ∩ B 6= ∅, then there must exist a v ∈ A ∩ B. This

implies N(A) ∩N(B) contains three consecutive vertices, namely v − 1, v, and
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t vertices

t-run

t-gap

Figure 3.1: Sections of a set on the n-cycle showing a t-run and a t-gap. The
crosses indicate vertices that are members of the set. The shaded rectangles
enclose vertices that are members of the extended neighbourhood.

v+1. If A and B almost intersect but A∩B = ∅, then there exists a vertex v ∈ A
and w ∈ B such that w = v − 1 or v + 1. In either case v, w ∈ N(A) ∩N(B),

and hence the intersection contains two adjacent points.

Now let us prove that if N(A) ∩N(B) contains two adjacent points then A

and B almost intersect. Let the two adjacent points be v and v + 1. If v ∈ A
then A and B almost intersect as v ∈ N(B). Similarly v+ 1 ∈ A implies A and

B almost intersect, as does v ∈ B, or v + 1 ∈ B. The only case left to consider

is if v and v + 1 do not lie in A or B. In such a situation the only way v can

lie in N(A) is if v − 1 ∈ A. Similarly v − 1 must lie in B, and hence A and B

intersect.

We say that a t-run from a set A lies in an r-gap from a set B if the t

vertices of the run in A are a subset of the r vertices of the gap in B.

Lemma 3.2.6. Two sets A and B do not almost intersect if and only if every

run in A lies in a gap in B.

Proof. If every run in A lies in a gap in B then the intersection of the extended

neighbourhoods of A and B will only consist of points that are at the boundary

of runs in A and B. If A and B almost intersect then the intersection of the

extended neighbourhoods contain two adjacent vertices by Lemma 3.2.5. These

adjacent vertices must both be at boundaries of runs in A which is impossible.

If A and B do not almost intersect then no point in B can lie in the extended

neighbourhood of A. Consequently no point in B corresponds with a point in

a run of A. Hence all runs of A lie in gaps of B.

In order to prove we can get a large almost intersecting family, we look at a

typical k-set (on an n-cycle) and show that it has a (t+ 3)-run and no gaps of
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size t or greater, where

t = 6

⌈
− log n

2 log (3x(1− x)2)

⌉
,

and x = k/n. By Lemma 3.2.6 any two such sets must almost intersect which

will be enough to prove Theorem 3.2.1.

Lemma 3.2.7 (A typical set does not contain a gap of size t or greater). For

any fixed ε > 0, if 1
4

+ ε ≤ x ≤ 1
2

then (1− o(1))
(
n
k

)
of k-sets on an n-cycle do

not contain a gap of size t or greater.

Lemma 3.2.8 (A typical set contains a (t + 3)-run). For any fixed ε > 0, if
1
4

+ ε ≤ x ≤ 1
2

then (1− o(1))
(
n
k

)
of k-sets, on an n-cycle, contain a (t+ 3)-run.

Proof of Theorem 3.2.1. When k > n/2 by the pigeonhole principle any two

k-sets will intersect, so α(n, k) =
(
n
k

)
. Consequently all we have to prove is that

for all fixed ε > 0 if 1/4 + ε ≤ x ≤ 1/2 then α(n, k) = (1 − o(1))
(
n
k

)
. Lemmas

3.2.7 and 3.2.8 tell us that (1− o(1))
(
n
k

)
of the k-sets contain a (t+ 3)-run and

no gaps of size t or greater. Hence by Lemma 3.2.6 any two sets from this family

must almost intersect.

The proofs of Lemmas 3.2.7 and 3.2.8 require us to write various binomials

as proportions of
(
n
k

)
. Consequently the following lemma will be very useful.

Lemma 3.2.9. Let f, g be integers that vary with n. If x = k/n satisfies

ε ≤ x ≤ 1− ε for some fixed ε > 0, f = o(
√
n), and g = o(

√
n) then as n tends

to infinity we have (
n−f
k−g

)(
n
k

) ∼ xg(1− x)f−g.

Proof. First let us rewrite the left hand side using factorials(
n−f
k−g

)(
n
k

) =
(n− f)!

n!

(xn)!

(xn− g)!

(n− xn)!

(n− xn− f + g)!
.
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Stirling’s formula tells us that m! ∼
√

2πm mme−m, hence(
n−f
k−g

)(
n
k

) ∼√(n− f
n

)(
xn

xn− g

)(
n− xn

n− xn− f + g

)
× (n− f)n−f

nn
(xn)xn

(xn− g)xn−g
(n− xn)n−xn

(n− xn− f + g)n−xn−f+g
.

The term inside the square root tends to 1 as n → ∞, because f = o(
√
n),

g = o(
√
n), and ε ≤ x ≤ 1− ε. The remaining terms can be rearranged to give(

n−f
k−g

)(
n
k

) ∼ (1− f

n

)n−f (
1− g

xn

)−xn+g
(

1− f − g
(1− x)n

)−(1−x)n+f−g

xg(1− x)f−g.

Next let us show that (1 − f
n
)n−f ∼ e−f . This is true if and only if (1 −

f
n
)n−fef → 1, which is in itself true if and only if n(1− f

n
) log (1− f

n
) + f → 0.

We can use the Taylor expansion for log(1− t) to show

n log

(
1− f

n

)
+ f = −f

2

2n
− f 3

3n2
− f 4

4n3
− · · · .

Note that |f |2/n + |f |3/n2 + |f |4/n3 + · · · has a larger magnitude and is a

geometric series that sums to

|f |2

n

(
1− |f |

n

)−1

.

The sum therefore tends to 0 because f = o(
√
n). Consequently we know(

n log

(
1− f

n

)
+ f

)(
1− f

n

)
= n

(
1− f

n

)
log

(
1− f

n

)
+ f − f 2

n
→ 0,

and since f 2/n → 0 (because f = o(
√
n)) we have the desired statement that

n(1− f
n
) log (1− f

n
) + f → 0.

We can similarly show that (1− g
xn

)−xn+g ∼ eg and (1− f−g
(1−x)n

)−(1−x)n+f−g ∼
ef−g. Therefore

(
n−f
k−g

)
/
(
n
k

)
∼ e−fegef−gxg(1− x)f−g = xg(1− x)f−g.

We will use Lemma 3.2.9 to prove that a typical set does not contain a gap

of size t or greater.

Proof of Lemma 3.2.7. Any set that contains a gap of size t or greater will have
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t consecutive points that are not in the set. An overestimate of the number of

such sets is n
(
n−t
k

)
, which as a proportion of all k-sets is

n
(
n−t
k

)(
n
k

) ∼ n(1− x)t

for large n, by Lemma 3.2.9. We want to show that this value is o(1), or

equivalently as n→∞, we have n(1− x)t → 0.

Observe that n(1 − x)t → 0 if and only if log n + t log (1− x) → −∞. We

can substitute in

t = 6

⌈
− log n

2 log (3x(1− x)2)

⌉
= − 3 log n

log (3x(1− x)2)
+ δ

where δ is some real number between 0 and 6 (depending on n). Hence

log n+ t log (1− x) = log n+

(
− 3 log n

log (3x(1− x)2)
+ δ

)
log (1− x)

=

(
1− 3 log (1− x)

log (3x(1− x)2)

)
log n+ δ log (1− x)

Note that δ log (1− x) is bounded so we can ignore any contribution it makes.

Define

f(x) = 1− 3 log (1− x)

log (3x(1− x)2)
.

If we can show f(x) is smaller than some fixed negative constant then we will

be done. A graph of f(x) is given in Figure 3.2, it shows that f(1/4) = 0

and as x increases f(x) decreases at least until x = 1/2. Since we are given

1/4 + ε ≤ x ≤ 1/2, we can deduce

0 = f(1
4
) > f(1

4
+ ε) ≥ f(x).

Hence f(x) is smaller than the fixed negative constant f(1
4

+ ε) as required.

To make the proof completely rigorous we need to show the derivative of

f(x) is negative in the region 1/4 ≤ x ≤ 1/2. It is not hard to compute f ′(x),

f ′(x) =

(
3

1− x

)
log (3x(1− x)) + log (1− x)

(
1−2x
x

)
(log (3x(1− x)2))2

.
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f(x)

x

1

−1

0
0.25 10.5

Figure 3.2: Graph of f(x) versus x, illustrating that f(x) is a negative strictly
decreasing function when 1

4
< x ≤ 1

2
.

Note that 3
1−x and (log (3x(1− x)2))2 are positive in the region 1/4 ≤ x ≤ 1/2,

so the sign of f ′(x) is determined completely by the term

log (3x(1− x)) + log (1− x)

(
1− 2x

x

)
.

3x(1 − x) ≤ 3/4 therefore log (3x(1− x)) < 0, similarly log (1− x) < 0, and

(1− 2x)/x ≥ 0, hence f ′(x) < 0.

To finish we will prove the harder result that a typical set contains a (t+ 3)-

run.

Proof of Lemma 3.2.8. Let us define a specific type of run which we will call a

dominant run. A dominant run contains exactly t/2 + 1 points from the set.

This means that there are exactly t/2 spaces between the points from the set.

The size of the spaces can be 0, 1, or 2, see Figure 3.3. (A space of size 3 or

greater would cause there to be a gap in the extended neighbourhood.) We

further restrict the definition of a dominant run by insisting the number of 0, 1,

and 2 spaces all equal t/6. The total number of points that lie in the spaces

of a dominant run is 0 × t/6 + 1 × t/6 + 2 × t/6 = t/2. So the total number

of points covered by the spaces in between the points from the set, the points
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Space of 0

Space of 1

Space of 2

Figure 3.3: Sections of a set on the n-cycle showing spaces of 0, 1, and 2. The
crosses indicate vertices that are members of the set.

from the set themselves, and the points at the boundary is

t

2
+

(
t

2
+ 1

)
+ 2 = t+ 3.

So a dominant run is in fact a special type of (t+ 3)-run. We will prove that a

typical set contains a (t+ 3)-run by showing that it contains a dominant run.

Under the given definition how many ways can we construct a dominant

run? Equivalently we can ask, how many combinations of the 0, 1, and 2 spaces

are there? This is easily calculated to be(
t
2

)
!(

t
6

)
!
(
t
6

)
!
(
t
6

)
!
,

and Stirling’s formula tells us that for large t(
t
2

)
!(

t
6

)
!
(
t
6

)
!
(
t
6

)
!
∼ 3(t+3)/2

πt
.

Using this fact we will now calculate the expected number of dominant runs

there are in a random k-set. By calculating the variance and using Chebyshev’s

inequality we will show that a typical k-set has a dominant run with high

probability.

Let us number the points in the cycle from 1 to n and define random variables

Xi in the following way

Xi =

1, if there is a dominant run starting at vertex i,

0, otherwise.
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Now we can say for a random k-set

P[Xi = 1] ∼ 3(t+3)/2

πt

(
n− (t+ 7)

k − (t/2 + 1)

)(
n

k

)−1

.

The
(
n−(t+7)
k−(t/2+1)

)
term comes from the fact that we fix t/2 + 1 of the points in

the set to be one of the 3(t+3)/2/(πt) arrangements previously described. The

remainder of the points in the dominant run are not in the set. Furthermore

the points just outside the boundary of the run must not lie in the set to ensure

we have a (t + 3)-run and not a larger run. Hence overall we are fixing t + 7

points and are free to choose the remaining k − (t/2 + 1) members of the set

from n− (t+ 7) points.

Lemma 3.2.9 allows us to simplify the binomial parts in the expression of

P[Xi = 1], so for large n

P[Xi = 1] ∼ c

t
(3x(1− x))t/2 where c =

3
√

3

π
x(1− x)6.

Note that c is bounded. Define X to be the number of dominant runs in a

random k-set,

X =
n∑
i=1

Xi.

By the linearity of expectation we have

E[X] =
n∑
i=1

E[Xi] ∼ n
c

t
(3x(1− x))t/2.

We will eventually show that X is sufficiently concentrated about E[X] that

P[X = 0] = o(1). For this to occur we require that E[X] tend to something

larger than 1. In fact we will show that E[X] tends to infinity. By taking logs

we see that E[X]→∞ if and only if

log n+ log c− log t+
t

2
log (3x(1− x))→∞.

We can substitute in

t = − 3 log n

log (3x(1− x)2)
+ δ
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where δ is some real number between 0 and 6 (depending on n). Now we have(
1− 3 log (3x(1− x))

2 log (3x(1− x)2)

)
log n− log t+ log c+

δ

2
log (3x(1− x)).

The log c and δ
2

log (3x(1− x)) terms are bounded so we can ignore any contri-

bution they make. If we can show that the coefficient of log n is greater than a

fixed positive constant then we will be done. This is because n to the power of

a fixed positive constant grows much faster than t, which looks like log n. Let

us define the function g(x) as

g(x) = 1− 3 log (3x(1− x))

2 log (3x(1− x)2)
.

Recall that in the proof of Lemma 3.2.7, we defined

f(x) = 1− 3 log (1− x)

log (3x(1− x)2)
.

The two functions are similar in form and in fact g(x) = −1
2
f(x). This means

g(1/4) = 0 and g(x) is a strictly increasing function in the range 1/4 ≤ x ≤ 1/2.

Thus

0 = g(1
4
) < g(1

4
+ ε) ≤ g(x)

and hence E[X]→∞. Note that we have shown that nc(3x(1−x))t/2 grows as

fast or faster than n to the power of some fixed positive constant, this will be

useful later.

In order to apply Chebyshev’s inequality we need to calculate the variance

of X which we can obtain by looking at E[X2]. By the linearity of expectation,

E[X2] =
n∑
i=1

n∑
j=1

E[XiXj] =
n∑
i=1

n∑
j=1

P[(Xi = 1) ∩ (Xj = 1)].

There are t + 7 consecutive vertices which determine whether a dominant run

starts at i (t+3 vertices which make up the run, plus an additional two at either

boundary to ensure it isn’t a larger run). If i and j are at least t + 7 vertices
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apart then it is not hard to see that

P[(Xi = 1) ∩ (Xj = 1)] =

( (
t
2

)
!(

t
6

)
!
(
t
6

)
!
(
t
6

)
!

)2(
n− 2(t+ 7)

k − 2(t/2 + 1)

)(
n

k

)−1

∼ E[X]2

n2
.

If i and j are less than t+ 7 vertices apart then we bound the probability as

P[(Xi = 1) ∩ (Xj = 1)] ≤ P[Xi = 1] =
E[X]

n
.

Out of the n2 choices of i and j, there are n(2t + 13) in which i and j are less

than t+ 7 vertices apart. Hence asymptotically we have the following bound on

E[X2]

E[X2] ≤ n(2t+ 13)

(
E[X]

n

)
+ n2

(
E[X]2

n2

)
,

and therefore

Var[X] ≤ (2t+ 13)E[X].

Applying Chebyshev’s inequality gives

P
[
|X − E[X]| ≥ E[X]2/3

]
≤ Var[X]

E[X]4/3

≤ 2t+ 13

E[X]1/3
∼
(

8t4

nc(3x(1− x))t/2

)1/3

→ 0

because as we showed earlier nc(3x(1− x))t/2 grows as fast as n to some fixed

positive power, whereas t grows like log n. Consequently we can say that (1 −
o(1))

(
n
k

)
of the sets satisfy

X > E[X]− E[X]2/3,

and when n is large E[X]−E[X]2/3 ≥ 1 (in fact it tends to infinity). So a typical

set contains at least one dominant run and therefore contains a (t+ 3)-run.
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3.3 Higher powered almost intersecting fami-

lies

Define d(a, b), the distance between vertices a and b on a cycle, to be the number

of edges in the shortest path from a to b. In this section we extend our result

from cycles to powers of cycles. The p-th power of a cycle is formed by adding

edges between any two vertices which are a distance of p or less from each other.

Theorem 3.3.1. For a fixed power p ≥ 1, let αp(n, k) be the size of the largest

almost intersecting family, of k-sets, on the p-th power of the n-cycle. For any

fixed ε > 0, if k
n
≥ 1

2p+2
+ ε then

αp(n, k) = (1− o(1))

(
n

k

)
.

Rather than work directly with powers of cycles, we will work with simple

cycles and extend our definition of almost intersection instead. Doing so will

make the generalisations clearer. The proof is almost identical to that given in

the previous section but there are a few differences. As before we define x to

be k/n, and we assume that k varies with n.

Definition 3.3.2 (Extended Neighbourhood of Power p). Let the extended

neighbourhood of power p of a set A be defined as

Np(A) =
⋃
∀a∈A

{b : d(a, b) ≤ p},

i.e. all points that are at most a distance p from some point in A.

Definition 3.3.3 (Almost Intersection of Power p). Given sets A, B, and a

power p ≥ 1, if A ∩Np(B) 6= ∅ then we say A and B almost intersect. Equiva-

lently A and B almost intersect if and only if there exists some a ∈ A and some

b ∈ B such that d(a, b) ≤ p.

Note that when p = 1 we recover our original definitions of almost intersect-

ing sets and extended neighbourhoods.

The definition of a gap remains the same, see Definition 3.2.4. However,

the definition of a run changes slightly to incorporate our generalisation of the

extended neighbourhood.
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Definition 3.3.4 (Run of Power p). We define a run of power p to be a set of

consecutive points that are in the extended neighbourhood of power p of a set.

Furthermore let us define a t-run to be a run of size t which is not a proper

subset of a larger run.

Lemma 3.3.5. Given a fixed power p ≥ 1, and n ≥ p + 1 (where n is the size

of our cycle), two sets A and B almost intersect if and only if Np(A) ∩Np(B)

contains at least p+ 1 consecutive points.

Proof. First let us show that almost intersection implies there are p + 1 con-

secutive points in the intersection of the extended neighbourhoods. If A and B

almost intersect then there are points a ∈ A and b ∈ B such that d(a, b) ≤ p.

By considering Np({a}) ∩ Np({b}) it is easy to see Np(A) ∩ Np(B) contains at

least p+ 1 consecutive points.

Now let us prove that if we have p+ 1 consecutive points in the intersection

of the extended neighbourhoods then the sets must almost intersect. Without

loss of generality let us assume the p + 1 points are C = {1, . . . , p + 1}. If a

vertex from A lies in C then it also lies in Np(B) and so A and B must be

almost intersecting. If no vertex from A lies in C then the only way vertex p+1

can be in Np(A) is if a vertex of A lies in D = {p+ 2, . . . , 2p+ 1}. Similarly if a

vertex from B lies in C we have almost intersection otherwise it must contain

a vertex in D. However if both A and B contain vertices in D then they must

almost intersect as |D| = p.

Lemma 3.3.6. Given a power p, sets A and B do not almost intersect if and

only if every run of power p in A lies in a larger or equal gap in B.

Proof. If A and B do not almost intersect then no point in B lies in Np(A) (by

the definition of almost intersection). Consequently every point in a run of A

corresponds to a point which does not lie in B. Hence runs in A lie in larger or

equal gaps in B.

Suppose every run in A lies in a larger or equal gap in B. We will show A and

B do not almost intersect by showing that Np(A) ∩ Np(B) contains at most p

consecutive vertices (see Lemma 3.3.5). Note that the extended neighbourhood

of a set is the union of its runs, so it is enough to prove the intersection of a

run in A and a run in B contains at most p consecutive vertices. The smallest

possible run in A is of size 2p + 1 and the largest possible gap in B which lies
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entirely within a run of B is of size 2p. Hence no run in A lies in a gap which lies

completely within a run of B. A run in A may lie in a gap which lies partially in

a run of B. Such gaps only occur at the boundary of runs in B, and the overlap

between the gap and the run in B is precisely p consecutive vertices. This is

enough to show that the intersection of a run in A and a run in B contains at

most p consecutive vertices and therefore A and B do not almost intersect.

To prove Theorem 3.3.1 we will show that a typical k-set (on an n-cycle)

has a (t+ 2p+ 1)-run and no gaps of size t or greater, where

t = (2p+ 1)(p+ 1)

⌈
− log n

(p+ 1) log ((2p+ 1)x(1− x)2p)

⌉
.

By Lemma 3.3.6 any two such sets will almost intersect.

Lemma 3.3.7 (A typical set does not contain a gap of size t or greater). For a

fixed power p ≥ 1, and any fixed ε > 0, if 1
2p+2

+ ε ≤ x ≤ 1
p+1

then (1− o(1))
(
n
k

)
of k-sets, on an n-cycle, do not contain a gap of size t or greater.

Lemma 3.3.8 (A typical set contains a (t + 2p + 1)-run). For a fixed power

p ≥ 1, and any fixed ε > 0, if 1
2p+2

+ ε ≤ x ≤ 1
p+1

then (1− o(1))
(
n
k

)
of k-sets,

on an n-cycle, contain a (t+ 2p+ 1)-run.

Proof of Theorem 3.3.1. Rather than work with powers of cycles, we will in-

stead consider the equivalent problem of almost intersection of power p on a

simple cycle.

Since almost intersection of power p−1 implies almost intersection of power

p, by induction it is enough to prove αp(n, k) = (1−o(1))
(
n
k

)
holds for 1

2p+2
+ε ≤

x ≤ 1
p+1

(as 1
p+1

> 1
2p

for p ≥ 2). Note that the case p = 1 is given by Theorem

3.2.1. When x is in this range Lemmas 3.3.7 and 3.3.8 tell us that (1− o(1))
(
n
k

)
of the k-sets contain a (t+ 2p+ 1)-run and no gaps of size t or greater. Hence

by Lemma 3.3.6 any two sets from this family must almost intersect.

Our proof of Lemma 3.3.7 will require the following lemma.

Lemma 3.3.9. For an integer p ≥ 1, and any 0 ≤ x ≤ 1 we have

(2p+ 1)x(1− x)p < 1.
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Proof. Define f(x) = (2p+ 1)x(1− x)p. By considering f ′(x) it is easy to show

the maximum value of f(x), in the region 0 ≤ x ≤ 1, occurs when x = 1
p+1

. So

if we can show f( 1
p+1

) < 1 we will be done.

f

(
1

p+ 1

)
=

(2p+ 1)pp

(p+ 1)p+1

=
2pp+1 + pp

pp+1 + (p+ 1)pp +
(
p+1

2

)
pp−1 + · · ·

=
2pp+1 + pp

(2pp+1 + pp) +
(
p+1

2

)
pp−1 + · · ·

which is obviously less than 1 provided p ≥ 1.

Proof of Lemma 3.3.7. The proof is almost identical to that of Lemma 3.2.7.

Any set that contains a gap of size t or greater will have t consecutive points

that are not in the set. An overestimate of the number of such sets is n
(
n−t
k

)
,

which as a proportion of all k-sets is

n
(
n−t
k

)(
n
k

) ∼ n(1− x)t

for large n (by Lemma 3.2.9). We want to show that as n → ∞, we have

n(1− x)t → 0. Observe that n(1− x)t → 0 if and only if log n+ t log (1− x)→
−∞. We can substitute in

t = (2p+ 1)(p+ 1)

⌈
− log n

(p+ 1) log ((2p+ 1)x(1− x)2p)

⌉
= − (2p+ 1) log n

log ((2p+ 1)x(1− x)2p)
+ δ

where δ is some real number between 0 and (2p + 1)(p + 1) (depending on n).

Hence

log n+ t log (1− x) = f(x) log n+ δ log (1− x),

where

f(x) = 1− (2p+ 1) log (1− x)

log ((2p+ 1)x(1− x)2p)
.
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It is easy to check that f( 1
2p+2

) = 0, furthermore if f is strictly decreasing in

the region [ 1
2p+2

, 1
p+1

], then

0 = f( 1
2p+2

) > f( 1
2p+2

+ ε) ≥ f(x).

Hence f(x) would be smaller than some fixed negative constant, which is enough

to prove f(x) log n+ δ log (1− x)→ −∞.

To show f is strictly decreasing we look at its derivative,

f ′(x) =
(2p+ 1) (x log ((2p+ 1)x(1− x)p) + (1− (p+ 1)x) log (1− x))

x(1− x)(log ((2p+ 1)x(1− x)2p))2
.

It should be clear that the sign of f ′(x) in the region 1
2p+2

≤ x ≤ 1
p+1

is

completely determined by the term

x log ((2p+ 1)x(1− x)p) + (1− (p+ 1)x) log (1− x).

Since x ≤ 1
p+1

we have (1 − (p + 1)x) log (1− x) ≤ 0. From Lemma 3.3.9

we have log ((2p+ 1)x(1− x)p) < 0 therefore x log ((2p+ 1)x(1− x)p) < 0 and

consequently f ′(x) < 0 as required.

We finish by proving that a typical set contains a (t+ 2p+ 1)-run.

Proof of Lemma 3.3.8. Let us extend our definition of a dominant run to take

into account the power p. A dominant run contains exactly t
p+1

+ 1 points from

the set. This means that there are exactly t
p+1

spaces between the points from

the set. The size of the spaces can be 0, 1, 2, . . . , 2p. A space of size 2p + 1 or

greater will cause there to be a gap in the extended neighbourhood. We further

restrict the definition of a dominant run by insisting the number of 0, 1, 2, . . . , 2p

spaces are all equal, and hence are t
(2p+1)(p+1)

. The total number of points that

lie in the spaces of a dominant run is

(0 + 1 + 2 + · · ·+ 2p)
t

(2p+ 1)(p+ 1)
=

pt

p+ 1
.

Therefore the total number of points covered by the spaces in between the points

from the set, the points from the set themselves, and the points at the boundary
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is

pt

p+ 1
+

(
t

p+ 1
+ 1

)
+ 2p = t+ 2p+ 1

So a dominant run is in fact a special type of (t+2p+1)-run. We will prove that

a typical set contains a (t+ 2p+ 1)-run by showing that it contains a dominant

run. The proof is almost identical to that of Lemma 3.2.8.

Let us number the points in the cycle from 1 to n and define random variables

Xi in the following way

Xi =

1, if there is a dominant run starting at vertex i,

0, otherwise.

For a random k-set

P[Xi = 1] =

(
t

p+1

)
!((

t
(2p+1)(p+1)

)
!
)2p+1

(
n− (t+ 4p+ 3)

k − ( t
p+1

+ 1)

)(
n

k

)−1

.

Stirling’s formula and Lemma 3.2.9 allows us to simplify the expression to

P[Xi = 1] ∼ c

tp
((2p+ 1)x(1− x)p)

t
p+1 ,

where

c =
√

2p+ 1

(
(2p+ 1)(p+ 1)

2π

)p
x(1− x)4p+2.

Note that c is bounded. Define X to be the number of dominant runs in a

random k-set. Hence

E[X] =
n∑
i=1

E[Xi] ∼ n
c

tp
((2p+ 1)x(1− x)p)

t
p+1 .

As in the proof of Lemma 3.2.8 we require that E[X] tends to infinity which is

true if and only if

log n+ log c− p log t+
t

p+ 1
log ((2p+ 1)x(1− x)p)→∞.
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Substituting in

t = − (2p+ 1) log n

log ((2p+ 1)x(1− x)2p)
+ δ,

where δ is some real number between 0 and (2p+ 1)(p+ 1), gives,

g(x) log n+ log c− p log t+
δ

p+ 1
log ((2p+ 1)x(1− x)p)

where

g(x) = 1− (2p+ 1) log ((2p+ 1)x(1− x)p)

(p+ 1) log ((2p+ 1)x(1− x)2p)
.

It is enough to show that g(x) is greater than some fixed positive constant, which

we can prove by observing that g(x) = − p
p+1

f(x), where f(x) was defined in

the proof of Lemma 3.3.7.

To finish the proof we follow the same argument as that given in the proof

of Lemma 3.2.8 to show that asymptotically

Var[X] ≤ (2t+ 8p+ 5)E[X],

and an application of Chebyshev’s inequality tells us that

P
[
|X − E[X]| ≥ E[X]

2
3

]
→ 0,

hence (1− o(1))
(
n
k

)
of the k-sets contain a (t+ 2p+ 1)-run.

3.4 Almost cross-intersecting families

In this section we generalize the notion of almost intersection in to the domain

of cross-intersection. We apply the same idea of runs and gaps to get a bound

for almost cross-intersecting families to be almost everything. This bound is

more complicated than the previous bounds but it is simple enough that we can

write it in a closed form.

To begin with let us describe what we mean by cross-intersection. Given

two families of sets A, and B we say they are cross-intersecting if for all A ∈ A
and B ∈ B, A ∩ B 6= ∅. To define almost cross-intersecting, we consider two

families A,B whose sets are subsets of the vertices of an n-cycle. We say A and
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B almost cross-intersect if for all A ∈ A and B ∈ B, A and B almost intersect

on the n-cycle. We will specifically be interested in when the families consist

of sets of a fixed size, i.e. when A contains only k1-sets and B is made up of

k2-sets.

Note that the definitions of extended neighbourhoods, runs, and gaps given

in Section 3.2 still hold for the almost cross-intersecting problem. Also Lemma

3.2.6 still applies, which implies that if there is a run in set A which is larger

than every gap in set B then A and B must almost intersect. Consequently if

for some t every set in A contains a run of size t or greater, and no set in B
contains a gap of size t or greater then A and B must almost cross-intersect.

We will use this idea in proving our main result.

Theorem 3.4.1. Let x, y ∈ [0, 1] be fixed rational values that satisfy r(x, y) > 0,

where

r(x, y) = 1− (1− x)3 − (1− y)3 − xy(3− x− y).

Given ε > 0 there exists a positive integer n (such that xn and yn are integers)

and almost cross-intersecting families on the n-cycle A,B, that consist of xn-

sets and yn-sets respectively, such that

|A| ≥ (1− ε)
(
n

xn

)
and |B| ≥ (1− ε)

(
n

yn

)
.

Theorem 3.4.1 tells us that r(x, y) > 0 implies there exist almost cross-

intersecting families that are almost everything for large n. Figure 3.4 shows a

graph of r(x, y) = 0. The proof of Theorem 3.4.1 is similar to that of Theorem

3.2.1 and so unsurprisingly we find that r(1
4
, 1

4
) = 0, which directly links the

two results. As a side note we find that r(x, y) is interestingly a factor of the

much simpler expression x(1− x)3 − y(1− y)3,

x(1− x)3 − y(1− y)3 = (y − x)r(x, y).

Though what role, if any, the quantity x(1− x)3 − y(1− y)3 plays is unclear.

Before we begin proving Theorem 3.4.1 we will need a few technical lemmas.

The lemmas will only consider x, y ∈ (0, 1) as it will be easier to deal with the

remaining trivial cases separately. We start by rigorously proving some features

of r(x, y) which are apparent in Figure 3.4.
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y

0 1

1

0 x

Figure 3.4: A graph of r(x, y) = 0. The points which satisfy r(x, y) = 0 consist
of the curve from (0, 1) to (1, 0), and the isolated point at (1, 1). Points lying
above the curve satisfy r(x, y) > 0 (with the exception of the point at (1, 1)).

Lemma 3.4.2. Given a fixed 0 < x < 1, there is exactly one real value of y

which satisfies r(x, y) = 0, which we will call y0. Furthermore 0 < y0 < 1 holds

true, and

r(x, y) < 0 when y < y0,

r(x, y) > 0 when y > y0.

Proof. r(x, y) is a cubic in y, so has at most two turning points (a maxima and

a minima). If we can show that r(x, y) > 0 at the minima then we can conclude

that r(x, y) has only one root.

dr

dy
= 3y2 + (2x− 6)y + (x2 − 3x+ 3)

hence dr
dy

= 0 when y = 1
3
(−x + 3 ± ω) where ω =

√
−2x2 + 3x. It is easy to

check that −2x2 + 3x > 0 for 0 < x < 1, so two distinct turning points occur,

and since the coefficient of y3 in r(x, y) is positive the minima must occur at
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y = 1
3
(−x+ 3 + ω). Therefore to show only one root occurs we need to show

r
(
x, 1

3
(−x+ 3 + ω)

)
=

x

27

(
20x2 − 45x+ 27 + (4x− 6)ω

)
is greater than 0. This is true if and only if 20x2 − 45x + 27 > (−4x + 6)ω. It

is straightforward to check that both sides of this inequality are positive when

0 < x < 1, so it is equivalent to prove (20x2 − 45x + 27)2 − (−4x + 6)2ω2 > 0.

Since

(20x2 − 45x+ 27)2 − (−4x+ 6)2ω2 = 27(x− 1)2((4x− 5)2 + 2)

we are done.

Because r(x, 0) = −(1 − x)3 < 0 and r(x, 1) = x(1 − x)2 > 0, we can

conclude that the only root, y0, lies between 0 and 1. Since r(x, y) is a cubic in

y with precisely one root y0, it is trivial to show r(x, y) > 0 when y > y0, and

r(x, y) < 0 when y < y0.

The proof of Theorem 3.4.1 involves the use of dominant runs just as in the

proof of Lemma 3.2.8. However, the precise definition of a dominant run will

now depend on x. Rather than define a dominant run directly using x it will

be more convenient to define it using α, a variable representing the proportion

of the run which is part of the underlying set. The next lemma describes the

relationship between α and the variables a0, a1, and a2 which will be used in

specifying the number of 0, 1, and 2 spaces in the definition of a dominant run.

The lemma following it defines the relationship between x and α.

Lemma 3.4.3. For α a real value let us define

β =
√
−8α2 + 12α− 3,

a0 = 1
6
(10α− 3− β),

a1 = 1
3
(−α + β),

a2 = 1
6
(−2α + 3− β).

When 1
3
< α < 1 holds, a0, a1, and a2 are real numbers that are strictly greater
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than 0. Furthermore, they satisfy the following properties

a0 + a1 + a2 = α,

a1 + 2a2 = 1− α,

a0a2 = a2
1.

It is easy to check that the claims asserted in the lemma are true so no proof

will be given.

Lemma 3.4.4. For 0 < x < 1 there exists a unique 1
3
< α < 1 such that

x =
a2

0

αa1 + a2
0

where a0 and a1 are functions of α defined in Lemma 3.4.3.

Proof. Define the function s(α) as

s(α) =
a2

0

αa1 + a2
0

By looking at some of the properties of s(α) we will show that it maps the

interval (1
3
, 1] to (0, 1] and that an inverse exists, which is sufficient to prove the

lemma.

It is easy to check that s(1) = 1. When α = 1
3

both a0 and a1 are 0, so s(1
3
)

is ill-defined. Instead let us calculate s(1
3

+ ε) for a small ε > 0. Evaluating β

at α = 1
3

+ ε gives

β =

√
−8

(
1

3
+ ε

)2

+ 12

(
1

3
+ ε

)
− 3

=
1

3

√
1 + 60ε+O(ε2),

and by applying the Taylor series expansion of
√

1 + t we get

β =
1

3
+ 10ε+O(ε2).

Consequently it is straightforward to show that a0 = O(ε2), and αa1 = ε+O(ε2).
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Therefore

s(1
3

+ ε) =
O(ε4)

ε+O(ε2)
=

O(ε3)

1 +O(ε)
.

So we can make s(α) as close to 0 as we like by taking α very close to 1
3
.

Furthermore s(1
3

+ ε) > 0 holds by Lemma 3.4.3. Therefore for α ∈ (1
3
, 1] the

range of s(α) contains the interval (0, 1] (by the intermediate value theorem).

It is straightforward to calculate that

ds

dα
=

a2
0

β(αa1 + a2
0)2

which is strictly greater than 0 for α ∈ (1
3
, 1]. This completes the proof as it

shows s(α) is a strictly increasing function, and therefore provides a bijection

between (1
3
, 1] and (0, 1].

The expression αα

a
a0
0 a

a1
1 a

a2
2
xα(1 − x)1−α will occur when we calculate the ex-

pected number of dominant runs in a xn-set. The following lemma will prove

useful when dealing with it.

Lemma 3.4.5. Given 0 < x < 1, let α ∈ (1
3
, 1) given by Lemma 3.4.4, satisfy

x =
a2

0

αa1 + a2
0

.

If y satisfies r(x, y) > 0, then

1− y < αα

aa00 a
a1
1 a

a2
2

xα(1− x)1−α < 1.

Proof. First let us simplify the expression

αα

aa00 a
a1
1 a

a2
2

xα(1− x)1−α

by substituting x =
a20

αa1+a20
and eliminating a2 by using the property a0a2 = a2

1,

given by Lemma 3.4.3. Hence

αα

aa00 a
a1
1 a

a2
2

xα(1− x)1−α = a2α−a0+a2
0 a1−α−a1−2a2

1

α

αa1 + a2
0
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which reduces further to
αa0

αa1 + a2
0

using the fact that 2α− a0 + a2 = 1 and 1−α− a1− 2a2 = 0, see Lemma 3.4.3.

Consequently the inequalities we are required to prove can be simplified to

0 < y0 < y,

where

y0 = 1− αa0

αa1 + a2
0

,

to ease notation. To prove this we consider

r(x, y0) =
α2a2

0

(αa1 + a2
0)3

(
a2

1 − a0(α− a0 − a1)
)
.

Using Lemma 3.4.3 we see that a2
1−a0(α−a0−a1) simplifies to a2

1−a0a2 which

in turn reduces to 0. Hence r(x, y0) = 0 and by Lemma 3.4.2 we know that

0 < y0 < 1. Furthermore, since y satisfies r(x, y) > 0, we have y0 < y.

We are now ready to begin proving Theorem 3.4.1.

Proof of Theorem 3.4.1. First let us deal with the trivial cases of when x is 0

or 1. If x = 0 then r(x, y) > 0 becomes −(1 − y)3 > 0 which is never true, for

y ∈ [0, 1]. If x = 1 then r(x, y) = y(1 − y)2 > 0 which implies y 6= 0. Clearly

we can find a positive n such that yn is an integer, since y is rational. It should

be equally obvious that the n-set intersects with every yn-set provided y 6= 0.

Hence taking A to be the family consisting of the n-set, and B to be the family

of all yn-sets, is enough to satisfy the conditions of the theorem for x = 1.

We have dealt with the case when x = 0 or 1 and by symmetry this also

covers the case when y = 0 or 1. We may therefore assume throughout the rest

of the proof that 0 < x < 1 and 0 < y < 1. We will also be fixing 1
3
< α < 1

such that

x =
a2

0

αa1 + a2
0

which we are free to do by Lemma 3.4.4. We take the definitions of a0, a1, and

a2 as those given in Lemma 3.4.3.
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We will prove the theorem in the standard way using runs and gaps. It

should be clear that there exists arbitrarily large n such that xn and yn are

integers. As such n get larger, we will show that the probability a random xn-

set has at least one run of size t+ 3 tends to 1 as does the probability a random

yn-set has no gaps of size t or greater, where

t = dh(x, y) log ne .

The function h(x, y) is not critical but in order for the proof to work we require

that h(x, y) > 0 (so that t > 0) and that it satisfies

log (1− y) < − 1

h(x, y)
< log

(
αα

aa00 a
a1
1 a

a2
2

xα(1− x)1−α
)
. (3.1)

Where these conditions come from will become apparent later. All these condi-

tions can be met due to Lemma 3.4.5. We choose an h(x, y) that satisfies these

conditions by taking −1/h(x, y) to be the average of its two bounds. Hence

h(x, y) =
−2

log
(

αα

a
a0
0 a

a1
1 a

a2
2
xα(1− x)1−α

)
+ log (1− y)

.

Now that we have defined h(x, y) we will show that a typical yn-set does not

contain a gap of size t or greater.

Any set that contains a gap of size t or greater will have t consecutive points

that are not in the set. An overestimate of the number of such sets is n
(
n−t
yn

)
,

which as a proportion of all yn-sets is

n
(
n−t
yn

)(
n
yn

) ∼ n(1− y)t

for large n by Lemma 3.2.9. We want to show that n(1 − y)t → 0 as n → ∞.

Observe that n(1 − y)t → 0 if and only if log n + t log (1− y) → −∞. We can

substitute in

t = dh(x, y) log ne

= h(x, y) log n+ δ
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where δ is some real number between 0 and 1 (depending on n). Hence

log n+ t log (1− y) = (1 + h(x, y) log (1− y)) log n+ δ log (1− y),

which clearly tends to −∞ if 1 + h(x, y) log (1− y) < 0. This holds true since

log (1− y) < − 1

h(x, y)

by the way we chose h(x, y), see (3.1). Therefore the proportion of yn-sets that

have a gap of size t or greater tends to 0.

To complete the proof we will show that the proportion of xn-sets that

contain a (t + 3)-run tends to 1, as n → ∞. As in the proof of Lemma 3.2.8

we define a special type of (t+ 3)-run which we will refer to as a dominant run.

However, our definition of a dominant run now depends on α which in turn is

chosen so that

x =
a2

0

αa1 + a2
0

,

see Lemma 3.4.4. A dominant run contains exactly dαte+1 points from the set.

This means that there are exactly dαte spaces between the points from the set.

The size of the spaces can be 0, 1, or 2. Define b0, b1, and b2 to be the number

of spaces in a dominant run, of size 0, 1, and 2 respectively. The size of b0, b1,

and b2 are given by

b0 = dαte − b(1− α)tc+ da2te,

b1 = b(1− α)tc − 2da2te,

b2 = da2te.

Unfortunately from the way we have defined b0, b1, and b2 they may turn out

to be negative. However,

b0 ∼ a0t,

b1 ∼ a1t,

b2 ∼ a2t,

and since a0, a1, and a2 are all positive, for sufficiently large n the values of

b0, b1, and b2 will also be positive. Note that b0, b1, and b2 have been carefully
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chosen so that the number of spaces b0 + b1 + b2 = dαte as required. The total

number of points that lie in the spaces of a dominant run is

0× b0 + 1× b1 + 2× b2 = b(1− α)tc

So the total number of points covered by the spaces in between the points from

the set, the points from the set, and the points at the boundary is

b(1− α)tc+ (dαte+ 1) + 2 = t+ 3.

So a dominant run is a special type of (t + 3)-run, as intended. We will prove

that a typical set contains a (t+ 3)-run by showing that it contains a dominant

run. The proof will be similar to that of Lemma 3.2.8.

Let M be the number of ways of arranging the spaces within a dominant

run.

M =
dαte!
b0!b1!b2!

Stirling’s formula tells us that for large n

M ∼ 1

2π

√
dαte
b0b1b2

(
dαtedαte

bb00 b
b1
1 b

b2
2

)
∼ 1

2πt

√
α

a0a1a2

(
dαtedαte

bb00 b
b1
1 b

b2
2

)
.

Note that we can write

b0 = a0t+ 3δ0,

b1 = a1t− 3δ1,

b2 = a2t+ δ2,

dαte = αt+ δ3,

where δ0, δ1, δ2, and δ3 are real numbers between 0 and 1 (dependent on n).
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Thus

dαtedαte =(αt+ δ3)αt+δ3

=(αt)αt+δ3
(

1 +
δ3

αt

)αt+δ3
∼(αt)αt+δ3eδ3

We can do something similar for bb00 , b
b1
1 , and bb22 . Consequently

M ∼ c0t
δ4

(
αα

aa00 a
a1
1 a

a2
2

)t
where

c0 =
e−3δ0+3δ1−δ2+δ3αδ3

2πa3δ0
0 a−3δ1

1 aδ22

√
α

a0a1a2

and δ4 = −1− 3δ0 + 3δ1 − δ2 + δ3.

Note that both c0 and δ4 depend on n but are bounded, in fact δ4 ∈ [−5, 3].

Let X be the number of dominant runs in an xn-set. By considering the

probability a dominant run occurs at a specific position, and the linearity of

expectation, it is easy to show that

E[X] = n
M
(

n−(t+7)
xn−(dαte+1)

)(
n
xn

)
Lemma 3.2.9 allows us to simplify this expression,

E[X] ∼ nMxdαte+1(1− x)t−dαte+6.

Substituting dαte = αt+ δ3 and our approximation of M gives

E[X] ∼ c1nt
δ4

(
αα

aa00 a
a1
1 a

a2
2

xα(1− x)1−α
)t

where c1 = c0x
1+δ3(1− x)6−δ3 . As in the proof of Lemma 3.2.8 we require that

E[X]→∞ as n→∞. Instead we will show the equivalent statement that

log c1 + log n+ δ4 log t+ t log

(
αα

aa00 a
a1
1 a

a2
2

xα(1− x)1−α
)

(3.2)
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tends to infinity. Substituting t = h(x, y) log n+ δ5 (where δ5 ∈ [0, 1] depending

on n) into (3.2) gives(
1 + h(x, y) log

(
αα

aa00 a
a1
1 a

a2
2

xα(1− x)1−α
))

log n+ δ4 log t+

log c1 + δ5 log

(
αα

aa00 a
a1
1 a

a2
2

xα(1− x)1−α
)
.

If we can show that the coefficient of log n is positive then we will be done, and

this is true because

− 1

h(x, y)
< log

(
αα

aa00 a
a1
1 a

a2
2

xα(1− x)1−α
)

holds by (3.1). This proves that E[X]→∞.

The remainder of the proof is almost identical to that of Lemma 3.2.8. By

following a similar argument we can show that

Var[X] ≤ (2t+ 13)E[X],

and an application of Chebyshev’s inequality tells us that

P
[
|X − E[X]| ≥ E[X]

2
3

]
→ 0.

Hence the proportion of the xn-sets that do not contain a (t + 3)-run tends to

0.

3.5 Open problems

The main motivation for this chapter was Conjecture 3.1.2 made by Bohman,

Frieze, Ruszinkó, and Thoma [1]. It still remains open and is the most intriguing

question in the area. We have shown that α(n, k) = (1− o(1))
(
n
k

)
when k/n ≥

1/4 + ε, which leads us to make the following conjecture.

Conjecture 3.5.1. Conjecture 3.1.2 holds true with threshold value γ = 1/4.

Although the proof given in Section 3.2 is not overly complicated, the end

result of 1/4 is such a simple value that it suggests there is perhaps a simpler

and more illuminating argument. This hypothesis appears to be supported by
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the fact we have an equally simple bound of 1/(2p+ 2) for the higher powered

problem, and the relation r(x, y)(y − x) = x(1 − x)3 − y(1 − y)3 in the cross-

intersection case. Searching for a more direct argument may be a worthwhile

approach to answering whether 1/4 is the threshold.
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Chapter 4

Independent Sets in Trees

4.1 Introduction

An independent set of a graphG = (V (G), E(G)) is a subset of V (G) in which no

two members are neighbours in G. We call an independent set A an independent

r-set if |A| = r.

For a given graph G a natural question to ask is what is the largest intersect-

ing family of independent r-sets. The Erdős–Ko–Rado theorem [12] suggests

that taking all independent r-sets that contain a fixed vertex v may be a good

candidate. We define I(v,G, r) to be the number of independent r-sets in G

that contain v. An interesting subproblem is to find the vertex v which yields

the largest I(v,G, r).

Hurlbert and Kamat [20] make the following conjecture when G is a tree.

Conjecture 4.1.1. For any tree T , and r ∈ N, there exists a leaf x such that

for all v ∈ V (T ),

I(x, T, r) ≥ I(v, T, r).

They show the conjecture holds for r ≤ 4, although their proof is a bit

unclear. We will give a slightly modified version of their proof and then show

that the conjecture is false for r > 4.

Theorem 4.1.2. For any tree T , and r ≤ 4, there exists a leaf x such that for

all v ∈ V (T ), I(x, T, r) ≥ I(v, T, r).

To disprove the conjecture for r > 4 we consider the following family of

trees Tn, see Figure 4.1. Formally Tn is a tree with 4n + 3 vertices, V (Tn) =
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Tn v1

v2 v3

v4 v5 vn+3 vn+4 vn+5 v2n+3

v2n+4 v2n+5 v3n+3 v3n+4 v3n+5 v4n+3

Figure 4.1: The tree Tn, with vertices labelled v1, . . . , v4n+3.

{v1, . . . , v4n+3}, and

E(Tn) ={v1v2, v1v3} ∪ {v2vi+3 : 1 ≤ i ≤ n} ∪ {v3vi+n+3 : 1 ≤ i ≤ n}∪

{vi+3vi+2n+3 : 1 ≤ i ≤ 2n}.

Theorem 4.1.3. Given r > 4 and n ≥ r2, for all leaves x of Tn,

I(x, Tn, r) < I(v1, Tn, r).

4.2 Proof of Theorem 4.1.2

The conjecture trivially holds for r ≤ 2 as for all graphs G and vertices v ∈
V (G), we have I(v,G, 1) = 1, and I(v,G, 2) = |V (G)| − 1− d(v), where d(v) is

the degree of the vertex v. If |V (G)| < r then it is again trivial to prove. Hence

to prove Theorem 4.1.2 we need only look at independent sets of size r = 3, 4,

on trees with at least r vertices.

Let T be a tree and C be a family of independent r-sets that contain an

internal vertex c. We will prove Theorem 4.1.2, by showing that there exists a

leaf l for which we can construct an injective function f which maps the sets in

C to independent r-sets on T that contain l.

It is easy to show that in any tree there exists a unique simple path between

any two vertices. Let us define the distance between two vertices in a tree as

the number of edges in the unique simple path that joins them. If there exists

a leaf which is at a distance of at most two from vertex c then we choose it to
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be our leaf l and take f to be

f(C) =

C, if l ∈ C,

C \ {c} ∪ {l}, if l /∈ C,

for C ∈ C. It is simple to check f is injective and maps the sets in C to

independent r-sets containing l. Thus I(c, T, r) ≤ I(l, T, r) in this case.

If all leaves are a distance of at least three away from c, we choose any

leaf to be l. To define an appropriate function f we need to choose any two

distinct neighbours of c, which we will call v1, v2 (this is always possible as c is

an internal vertex, hence d(c) ≥ 2). Also let us define vertex u to be the unique

neighbour of l. Note that because the distance between c and l is at least three,

the vertices c, v1, v2, u, and l are all distinct.

If r = 3 we define f as

f(C) =



C, if l ∈ C,

C \ {c} ∪ {l}, if l /∈ C, u /∈ C,

{l, v1, x}, if l /∈ C, u ∈ C, xv1 /∈ E(T ) where x ∈ C \ {c, u},

{l, v2, x}, if l /∈ C, u ∈ C, xv1 ∈ E(T ) where x ∈ C \ {c, u}.

It is easy to check that for all C ∈ C, f maps C to a 3-set containing l. It is

also not hard to see that f(C) is an independent set for the cases l ∈ C and

l, u /∈ C. If l /∈ C and u ∈ C then C = {c, u, x} for some vertex x 6= c, v1, v2, u, l.

If xv1 /∈ E(T ) then it is simple to show that {l, v1, x} is an independent set.

If xv1 ∈ E(T ) then xv2 /∈ E(T ) must hold, otherwise x, v1, c, v2 would form a

4-cycle. Hence similarly {l, v2, x} will be an independent set. To prove f is

injective we consider the function g : im(f)→ C defined as

g(A) =



A, if c ∈ A,

A \ {l} ∪ {c}, if c /∈ A, v1, v2 /∈ A,

A \ {l, v1} ∪ {c, u}, if c /∈ A, v1 ∈ A,

A \ {l, v2} ∪ {c, u}, if c /∈ A, v1 /∈ A, v2 ∈ A.

It is straightforward to check that g(f(C)) = C for all C ∈ C which implies f

is injective, and so completes the proof for r = 3.
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If r = 4 then we define f for C ∈ C as follows:

• If l ∈ C then f(C) = C.

• If l, u /∈ C then f(C) = C \ {c} ∪ {l}.

• If l /∈ C, u ∈ C, then C = {c, u, w1, w2} for some vertices w1, w2 6=
c, v1, v2, u, l. We split this case into three subcases.

– If v2w1, v2w2 /∈ E(T ) then f(C) = {l, v2, w1, w2}.

– If at least one of v2w1, v2w2 is in E(T ), and v1w1, v1w2 /∈ E(T ) then

f(C) = {l, v1, w1, w2}.

– If at least one of v2w1, v2w2 is in E(T ), and at least one of v1w1, v1w2

is also in E(T ), then to avoid the 4-cycles cv1w1v2c and cv1w2v2c,

we must have that either v1w1, v2w2 ∈ E(T ), v1w2, v2w1 /∈ E(T ) or

v1w2, v2w1 ∈ E(T ), v1w1, v2w2 /∈ E(T ). Since T is a tree with all its

leaves at a distance of at least three from c, both w1, w2 are not leaves.

Hence we can find neighbours x1, x2 of w1, w2 respectively such that

x1, x2 6= v1, v2. In fact x1, x2 are distinct from c, v1, v2, u, l, w1, w2,

and importantly v1x1, v1x2 /∈ E(T ). Consequently we define f(C) =

{l, v1, x1, x2} which must be an independent set.

To prove that f is injective we again construct a function g such that

g(f(C)) = C for all C ∈ C. For A ∈ im(f), g is defined as:

• If c ∈ A then g(A) = A.

• If c, v1, v2 /∈ A then g(A) = A \ {l} ∪ {c}.

• If c /∈ A, v2 ∈ A then g(A) = A \ {l, v2} ∪ {c, u}.

• If c, v2 /∈ A, v1 ∈ A then A is of the form {l, v1, a1, a2} with a1, a2 6= v2.

– If a1v2 or a2v2 is in E(T ) then g(A) = {c, u, a1, a2}.

– If a1v2, a2v2 /∈ E(T ), then g(A) = {c, u, b1, b2}, where b1, b2 are the

neighbours of a1, a2 respectively on the unique simple paths joining

a1, a2 to c.

This completes the proof for r = 4, and hence the proof of Theorem 4.1.2.
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4.3 Proof of Theorem 4.1.3

Due to the symmetric nature of Tn, see Figure 4.1, it is easy to see that

I(x, Tn, r) is the same for all choices of leaves x. Hence to prove Theorem

4.1.3 it is sufficient to show I(v4n+3, Tn, r) < I(v1, Tn, r) for r > 4 and n ≥ r2.

First we count the number of independent r-sets containing v1. If v1 is in

our set then v2, v3 cannot be in, as our set is independent. Consequently we

have to choose the r − 1 remaining elements of our set from the 2n disjoint

edges {vi+3v2n+3 : 1 ≤ i ≤ 2n}. Hence

I(v1, Tn, r) =

(
2n

r − 1

)
2r−1.

Next we count the number of independent r-sets containing v4n+3 by splitting

it into five cases.

(i) v1 is part of the set.

Because the set must be independent v2, v3, v2n+3 cannot be in the set.

The remaining r − 2 vertices must be taken from the 2n − 1 disjoint

edges {vi+3vi+2n+3 : 1 ≤ i ≤ 2n − 1}. Hence there are
(

2n−1
r−2

)
2r−2 such

independent r-sets.

(ii) v1 is not part of the set, and v2, v3 are.

The remaining r− 3 vertices must be taken from the set of 2n− 1 vertices

{v2n+4, . . . , v4n+2}. There are
(

2n−1
r−3

)
such sets.

(iii) v1, v3 are not part of the set, and v2 is.

The remaining r−2 vertices, are taken from the disjoint set of n−1 edges

{vi+n+3vi+3n+3 : 1 ≤ i ≤ n−1} and the set of n vertices {v2n+4, . . . , v3n+3}.
The number of sets in which k of the vertices come from the n− 1 edges

is
(
n−1
k

)(
n

r−2−k

)
2k. Hence overall there are

r−2∑
k=0

(
n− 1

k

)(
n

r − 2− k

)
2k

independent r-sets containing v2, v4n+3 but not v1, v3.

(iv) v1, v2 are not part of the set, and v3 is.

The remaining r − 2 vertices, are taken from the disjoint set of n edges
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{vi+3vi+2n+3 : 1 ≤ i ≤ n} and the set of n− 1 vertices {v3n+4, . . . , v4n+2}.
The number of such independent sets is

r−2∑
k=0

(
n− 1

k

)(
n

r − 2− k

)
2r−2−k.

(v) v1, v2, v3 are not part of the set.

The remaining r − 1 vertices, are taken from the disjoint set of 2n − 1

edges {vi+3vi+2n+3 : 1 ≤ i ≤ 2n− 1}. There are
(

2n−1
r−1

)
2r−1 such sets.

Putting all this together gives

I(v4n+3, Tn, r) =

(
2n− 1

r − 3

)
+

(
2n− 1

r − 2

)
2r−2 +

(
2n− 1

r − 1

)
2r−1+

r−2∑
k=0

(
n− 1

k

)(
n

r − 2− k

)(
2k + 2r−2−k) .

Applying the fact that
(

2n
r−1

)
=
(

2n−1
r−1

)
+
(

2n−1
r−2

)
to I(v1, Tn, r) we see that

I(v1, Tn, r)− I(v4n+3, Tn, r) equals

(
2n− 1

r − 2

)
2r−2 −

(
2n− 1

r − 3

)
−

r−2∑
k=0

(
n− 1

k

)(
n

r − 2− k

)(
2k + 2r−2−k) .

Using the identity

(
2n− 1

r − 2

)
=

r−2∑
k=0

(
n− 1

k

)(
n

r − 2− k

)

we get I(v1, Tn, r)− I(v4n+3, Tn, r) is

−
(

2n− 1

r − 3

)
+

r−2∑
k=0

(
n− 1

k

)(
n

r − 2− k

)(
2r−2 − 2k − 2r−2−k) .
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Since (
2n− 1

r − 3

)
=

r−2∑
k=1

(
n− 1

k − 1

)(
n

r − 3− (k − 1)

)

=
r−2∑
k=0

k

n− k

(
n− 1

k

)(
n

r − 2− k

)
,

we have I(v1, Tn, r)− I(v4n+3, Tn, r) is

r−2∑
k=0

(
n− 1

k

)(
n

r − 2− k

)(
2r−2 − 2k − 2r−2−k − k

n− k

)
. (4.1)

If n ≥ r2 and 2 ≤ k ≤ r − 4 then

2r−2 − 2k − 2r−2−k − k

n− k
> 2r−2 − 2k − 2r−2−k − 1

=
(
2k − 1

) (
2r−2−k − 1

)
− 2

> 0.

Therefore to prove I(v1, Tn, r) > I(v4n+3, Tn, r) it will be enough to show that

the terms corresponding to k = 0, 1, r − 3, r − 2 in (4.1) have a sum that is

strictly greater than 0. These four terms sum to

−
(

n

r − 2

)
+ (n− 1)

(
n

r − 3

)(
2r−3 − 2− 1

n− 1

)
+(

n− 1

r − 3

)
n

(
2r−3 − 2− r − 3

n− r + 3

)
+

(
n− 1

r − 2

)(
−1− r − 2

n− r + 2

)
which simplifies to(

n

r − 3

)(
(2n− r + 2)

(
2r−3 − 1

)
− 2nr − 2n− 2r + 6

r − 2

)
. (4.2)

Since n ≥ r2 and r > 4, it is easy to check that (4.2) is larger than

(2n− r + 2)

(
n

r − 3

)(
2r−3 − 1− r

r − 2

)
.
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Note that for r > 4,

2r−3 − 1− r

r − 2
> 2r−3 − 4 ≥ 0,

hence (4.2) is greater than 0 and therefore so is (4.1). This implies that

I(v1, Tn, r) > I(v4n+3, Tn, r) for r > 4 and n ≥ r2 which completes the proof of

Theorem 4.1.3.
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Appendix A

GraphFinder

The following is a C++ implementation of the algorithm that produces a list

of possible extremal vertex minimal tripartite graphs, as described in Chapter

1. The graphs it outputs are given in Figure 1.11. The code can also be found

on the accompanying CD-ROM in the GraphFinder directory.

#include <iostream>

#include <iomanip>

#include <fstream>

using namespace std;

//If bSaveToTxtFile is true it will save the output of the program to the file "Output.txt".

bool bSaveToTxtFile = false;

//CGraph stores data about a tripartite graph (with at most 3 vertices per vertex class, see

//Lemma 1.4.11).

//

//Member variables

//----------------

//

//M[][] is the adjacency matrix of the graph.

// An entry of 1 means the edge is present, 0 indicates it is missing.

//

//hasVertex[] tells us which vertices are part of the graph.

// This allows us to represent smaller class sizes.

// An entry of 1 means the vertex is part of the graph, 0 indicates it is missing.

//

//idEdge is a 27 bit integer representation of M[][].

// We use EdgeMatrix[][] to convert between M[][] and idEdge.

//

//idVertex is a 9 bit integer representation of hasVertex[].

// The least significant bit should correspond to hasVertex[0].

//

//classSize[] keeps track of the size of the vertex classes (for speed).

// E.g. classSize[0] = hasVertex[0]+hasVertex[1]+hasVertex[2].

//
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//Member functions

//----------------

//

//void AssignMatrixFromID(long id) id should be a 27 bit integer. The function sets idEdge

// to id, then uses EdgeMatrix[][] to construct the

// corresponding adjacency matrix M[][].

//

//void AssignVerticesFromID(long id) id should be a 9 bit integer. The function sets idVertex

// to id and then constructs the corresponding hasVertex[]

// array. It also fills in classSize[].

//

//Notes

//-----

//

//The vertex classes are:

//Class 0 - vertices 0, 1, 2,

//Class 1 - vertices 3, 4, 5,

//Class 2 - vertices 6, 7, 8.

//

//Observe that vertex v lies in vertex class v/3 (where ’/’ is the integer division

//operator). This provides an efficient way of testing if two vertices lie in the same vertex

//class, which we will need to do often.

//

//If hasVertex[v] is zero it means vertex v should not be considered part of the tripartite

//graph. This is to allow CGraph to be flexible enough to represent tripartite graphs of

//smaller order. The adjacency matrix M[][] is of fixed size but since vertex v is not part

//of the graph, the entries in row v and column v are of no importance. Some functions assume

//(for speed purposes) that if the vertex is missing then its corresponding column and row

//entries should all be zero.

//

//To speed things up, functions that take CGraph objects as input do little (if any) checking

//that the objects are well-formed, e.g. entries of M[][] are all 0 or 1, M[][] is symmetric,

//that idEdge correctly represents M[][], or vertices that are not part of the graph have no

//neighbours. It is the responsibility of the process calling such functions to ensure that

//the CGraph objects are well-formed.

//

//We keep a record of the variables idEdge and idVertex as they provide a natural ordering of

//CGraph objects. This helps make the process of testing if two tripartite graphs are

//strongly-isomorphic to each other more efficient.

class CGraph

{

public:

//Construct M[][] using EdgeMatrix[][] and id (a 27 bit integer), idEdge is set to id.

void AssignMatrixFromID(long id);

//Sets idVertex to id (a 9 bit integer), then constructs hasVertex[] and classSize[].

void AssignVerticesFromID(long id);

//The adjacency matrix of the graph.

//0 = Edge missing.

//1 = Edge present.

long M[9][9];
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//Used to indicate which vertices are part of the graph.

//0 = Vertex has been removed.

//1 = Vertex is part of the graph.

long hasVertex[9];

//A 27 bit integer representing M[][].

long idEdge;

//A 9 bit integer representing hasVertex[].

long idVertex;

//The size of the vertex classes.

long classSize[3];

};

//EdgeMatrix[][] is used to bijectively map the 27 possible edges of the tripartite graphs to

//27 bit integers. The entries indicate which bit (0 to 26) in CGraph::idEdge is the

//corresponding entry in the adjacency matrix CGraph::M[][]. Entries of -1 indicate that such

//an edge lies within a vertex class, so should always be zero in CGraph::M[][], and

//consequently does not get mapped to any of the 27 bits in CGraph::idEdge.

long EdgeMatrix[9][9] = {

{-1, -1, -1, 18, 19, 20, 0, 1, 2},

{-1, -1, -1, 21, 22, 23, 3, 4, 5},

{-1, -1, -1, 24, 25, 26, 6, 7, 8},

{18, 21, 24, -1, -1, -1, 9, 10, 11},

{19, 22, 25, -1, -1, -1, 12, 13, 14},

{20, 23, 26, -1, -1, -1, 15, 16, 17},

{ 0, 3, 6, 9, 12, 15, -1, -1, -1},

{ 1, 4, 7, 10, 13, 16, -1, -1, -1},

{ 2, 5, 8, 11, 14, 17, -1, -1, -1}};

//The 1296 permutations of the the 9 vertices that leaves the tripartite graph

//strongly-isomorphic to its original form.

long StrongIsoPermute[1296][9];

//Store the possible extremal vertex minimal graphs in Store[][0]. Also keep a copy of all

//graphs strongly-isomorphic to Store[i][0] in Store[i][1 to 1295]. Use Found to track how

//much of Store[][] has been filled in.

CGraph Store[200][1296];

long Found;

//Graphs that are strongly-isomorphic to F7 and F9 (see Figure 1.8).

CGraph F7, F9;

//Displays the adjacency matrix of graph g. To help distinguish the vertex classes it uses

//the symbol ’.’ to represent edges that lie within a class.

void DisplayGraph(CGraph& g, ostream& os = cout);

//Display all the possible extremal vertex minimal graphs in Store[][0].

//Ignores graphs with idEdge = -1.

void DisplayStore(ostream& os = cout);

//Declared in CGraph. Construct M[][] using EdgeMatrix[][] and id (a 27 bit integer), idEdge
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//is set to id.

//void CGraph::AssignMatrixFromID(long id);

//Declared in CGraph. Sets idVertex to id (a 9 bit integer), then constructs hasVertex[]

//and classSize[].

//void CGraph::AssignVerticesFromID(long id);

//Initializes the StrongIsoPermute[][] array and constructs the graphs F7 and F9.

void SetUp();

//Returns true if it can show the graph is not extremal or not vertex minimal (using Lemmas

//1.4.10, 1.4.13, and 1.4.14).

bool bBadClassSize(CGraph& g);

//Returns true if it can show the graph is not extremal or not vertex minimal (using

//Corollary 1.4.5).

bool bCanMoveEdgeWeights(CGraph& g);

//Returns true if g contains no triangles. We are not interested in such a graph by Theorem

//1.2.1.

bool bHasNoTriangles(CGraph& g);

//Returns true if it can show the graph is not extremal or not vertex minimal (using Lemma

//1.4.15). This function assumes Store[][] is filled with a complete list of possible

//extremal vertex minimal tripartite graphs.

bool bCanReplaceBy8(CGraph& g);

//Creates a graph strongly-isomorphic to gIn by using the vertex mapping given in

//StrongIsoPermute[p][]. The result is stored in gOut (which should be a different object

//to gIn).

void StrongIsoGraph(CGraph& gIn, long p, CGraph& gOut);

//Displays the adjacency matrix of graph g. To help distinguish the vertex classes it uses

//the symbol ’.’ to represent edges that lie within a class.

void DisplayGraph(CGraph& g, ostream& os)

{

long i,j;

for(i=0;i<9;i++)

{

if(g.hasVertex[i]==0)

continue; //Ignore vertices that are not part of the graph.

for(j=0;j<9;j++)

{

if(g.hasVertex[j]==0)

continue; //Ignore vertices that are not part of the graph.

//Display whether ij is an edge.

if(i/3==j/3)

os << " ."; //The edge lies within a vertex class.

else

{
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if(g.M[i][j]==0)

os << " 0"; //The edge is missing.

else

os << " 1"; //The edge is present.

}

}

os << endl;

}

os << endl;

return;

}

//Display all the possible extremal vertex minimal graphs in Store[][0].

//Ignores graphs with idEdge = -1.

void DisplayStore(ostream& os)

{

long i,order;

os << "Adjacency matrices of possible extremal vertex minimal tripartite" << endl;

os << "graphs (edges which would lie within a vertex class are indicated" << endl;

os << "by the entry \".\"):" << endl;

os << endl;

for(order=0;order<=9;order++) //Display the smallest order graphs first.

for(i=0;i<Found;i++)

{

if(Store[i][0].idEdge==-1)

continue; //The graph was removed.

if(Store[i][0].classSize[0]+Store[i][0].classSize[1]+Store[i][0].classSize[2]!=order)

continue; //The graph does not have the right number of vertices.

DisplayGraph(Store[i][0],os);

os << endl;

}

os << endl;

}

//Construct M[][] using EdgeMatrix[][] and id (a 27 bit integer), idEdge is set to id.

void CGraph::AssignMatrixFromID(long id)

{

long i,j;

idEdge = id;

//Fill in the adjacency matrix.

for(i=0;i<9;i++)

for(j=0;j<9;j++)
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if(i/3==j/3)

M[i][j] = 0; //Edge lies within a class.

else

M[i][j] = (id>>EdgeMatrix[i][j])&1; //Assign the the correct bit of id.

return;

}

//Sets idVertex to id (a 9 bit integer), then constructs hasVertex[] and classSize[].

void CGraph::AssignVerticesFromID(long id)

{

long i;

idVertex = id;

for(i=0;i<9;i++)

hasVertex[i] = (id>>i)&1; //Assign the "i"th bit of id.

for(i=0;i<3;i++)

classSize[i] = hasVertex[3*i]+hasVertex[3*i+1]+hasVertex[3*i+2];

return;

}

//Initializes the StrongIsoPermute[][] array and constructs the graphs F7 and F9.

void SetUp()

{

long i,n;

long idEdge,idVertex;

long P[4];

//Fill in the StrongIsoPermute[][] array.

{

//Permute[][] stores the 6 perumtations of {0,1,2}.

long Permute[6][3] = {{0,1,2}, {0,2,1}, {1,0,2}, {1,2,0}, {2,0,1}, {2,1,0}};

//Permute class 0 by Permute[P[0]][].

//Permute class 1 by Permute[P[1]][].

//Permute class 2 by Permute[P[2]][].

//Permute classes by Permute[P[3]][].

n = 0;

for(P[0]=0;P[0]<6;P[0]++)

for(P[1]=0;P[1]<6;P[1]++)

for(P[2]=0;P[2]<6;P[2]++)

for(P[3]=0;P[3]<6;P[3]++)

{

//Calculate the new label for vertex i.

//i is the "i%3" vertex in class "i/3", i.e. i = 3*(i/3)+(i%3).

//Class "i/3" gets mapped to class Permute[P[3]][i/3].

//The vertices in class "i/3" are permuted by Permute[P[i/3]][].

for(i=0;i<9;i++)

StrongIsoPermute[n][i] = 3*Permute[P[3]][i/3]+Permute[P[i/3]][i%3];
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n++;

}

}

//Construct the graph F7 (see Figure 1.8).

{

//Vertices 7,6,5,4,3,1,0 are part of F7.

//Vertices 8 and 2 are not part of F7.

idVertex = 251; //Binary 011111011.

//An array of the 9 edges in F7.

long Edge[9][2] = {{0,4}, {0,5}, {0,7}, {1,3}, {1,4}, {1,6}, {3,7}, {4,6}, {5,6}};

//Construct idEdge for F7 using Edge[][] and EdgeMatrix[][].

idEdge = 0;

for(i=0;i<9;i++)

idEdge |= 1<<EdgeMatrix[Edge[i][0]][Edge[i][1]];

F7.AssignVerticesFromID(idVertex);

F7.AssignMatrixFromID(idEdge);

}

//Construct the graph F9 (see Figure 1.8).

{

//Vertices 0 to 8 are part of F9.

idVertex = 511; //Binary 111111111.

//An array of the 15 edges in F9.

long Edge[15][2] = {

{0,4}, {0,5}, {0,7}, {1,3}, {1,5},

{1,6}, {1,8}, {2,4}, {2,6}, {2,7},

{3,7}, {3,8}, {4,6}, {4,8}, {5,7}};

//Construct idEdge for F9 using Edge[][] and EdgeMatrix[][].

idEdge = 0;

for(i=0;i<15;i++)

idEdge |= 1<<EdgeMatrix[Edge[i][0]][Edge[i][1]];

F9.AssignVerticesFromID(idVertex);

F9.AssignMatrixFromID(idEdge);

}

return;

}

//Returns true if it can show the graph is not extremal or not vertex minimal (using Lemmas

//1.4.10, 1.4.13, and 1.4.14).

bool bBadClassSize(CGraph& g)

{

//Our tests will involve testing the neighbourhoods of vertex 0 and 1.

if(g.hasVertex[0]==0 || g.hasVertex[1]==0)

return false;
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//Check whether vertices 0 and 1 have the same neighbours in class 1.

if(g.M[0][3]==g.M[1][3] && g.M[0][4]==g.M[1][4] && g.M[0][5]==g.M[1][5])

{

if(g.classSize[2]==3)

return true; //g is not extremal or not vertex minimal by Lemma 1.4.13.

if(g.classSize[0]==2)

return true; //g is not extremal by Lemma 1.4.10.

if(g.M[0][3]==g.M[2][3] && g.M[0][4]==g.M[2][4] && g.M[0][5]==g.M[2][5])

{

//Vertices 0, 1, and 2 have the same neighbours in class 1, hence by Lemma

//1.4.10 g is not extremal.

return true;

}

if(g.M[0][6]==g.M[1][6] && g.M[0][7]==g.M[1][7] && g.M[0][8]==g.M[1][8])

{

//Vertices 0 and 1 have the same neighbourhood, hence by Lemma 1.4.14 g is not

//vertex minimal.

return true;

}

}

return false;

}

//Returns true if it can show the graph is not extremal or not vertex minimal (using

//Corollary 1.4.5).

bool bCanMoveEdgeWeights(CGraph& g)

{

long i,j;

bool bC0,bC1;

bool bIsEqual, bIsSubset;

//We will try to apply Corollary 1.4.5 to

//(i) the edge 0,3 and the missing edge 0,4

//(ii) the edge 0,3 and the missing edge 1,4

if(g.hasVertex[0]==0 || g.hasVertex[1]==0

|| g.hasVertex[3]==0 || g.hasVertex[4]==0)

return false; //A vertex is missing so cannot apply the test.

if(g.M[0][3]==0)

return false; //Edge 0,3 is missing.

for(j=0;j<=1;j++)

if(g.M[j][4]==0)

{

//g contains edge 0,3 and j,4 is missing (where j = 0 or 1).

//Check C_{j,4} is a proper subset of C_{0,3}

bIsEqual = true;
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bIsSubset = true;

for(i=6;i<9;i++)

{

bC0 = (g.M[i][j]==1 && g.M[i][4]==1);

bC1 = (g.M[i][0]==1 && g.M[i][3]==1);

if(bC0==true && bC1==false)

bIsSubset = false;

if(bC0!=bC1)

bIsEqual = false;

}

if(bIsSubset==true && bIsEqual==false)

return true; //g is not extremal or not vertex minimal by Corollary 1.4.5.

}

return false;

}

//Returns true if g contains no triangles. We are not interested in such a graph by Theorem

//1.2.1.

bool bHasNoTriangles(CGraph& g)

{

long i,j,k; //Vertices in classes 0,1,2 respectively.

//Note that if a vertex is missing it has no neighbours so cannot be part of a triangle.

//This saves us having to use the hasVertex[] array.

for(i=0;i<3;i++)

for(j=3;j<6;j++)

for(k=6;k<9;k++)

if(g.M[i][j]==1 && g.M[i][k]==1 && g.M[j][k]==1)

return false; //ijk forms a triangle.

return true; //Could not find a triangle.

}

//Returns true if it can show the graph is not extremal or not vertex minimal (using Lemma

//1.4.15). This function assumes Store[][] is filled with a complete list of possible

//extremal vertex minimal tripartite graphs.

bool bCanReplaceBy8(CGraph& g)

{

long i,j,k,n;

long a0,b0,a1,b1;

long G1[10][10];

long G2[10][10];

bool bC0,bC1;

bool bSame;

//ReplaceEdgeID[] Holds the CGraph::idEdge values for the eight graphs described in Lemma

//1.4.15.

long ReplaceEdgeID[8];
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//We will try to apply Lemma 1.4.15 to

//(i) the edge 6,0 and the missing edge 6,1,

//(ii) the edge 6,0 and the missing edge 7,0,

//(iii) the edge 6,0 and the missing edge 7,1.

//Where class A in Lemma 1.4.15 is vertex class 2.

long cases[3][2] = {{6,1},{7,0},{7,1}};

//a1 = 6, b1 = 0,

//a0 = cases[n][0], b0 = cases[n][1].

if(g.classSize[2]!=3)

return false; //The class in which vertices a0, a1 lie in must be of size 3.

if(g.hasVertex[0]==0 || g.hasVertex[6]==0

|| g.hasVertex[1]==0 || g.hasVertex[7]==0)

return false; //A vertex is missing so cannot apply the test.

if(g.M[0][6]==0)

return false; //Edge 6,0 is missing.

a1 = 6;

b1 = 0;

for(n=0;n<3;n++)

{

//Find suitable values for a0,b0, a1,b1.

{

a0 = cases[n][0];

b0 = cases[n][1];

if(g.M[a0][b0]==1)

continue;

//Check C_{a0,b0} = C_{a1,b1}

bSame = true;

for(i=3;i<6;i++)

{

bC0 = (g.M[i][a0]==1 && g.M[i][b0]==1);

bC1 = (g.M[i][a1]==1 && g.M[i][b1]==1);

if(bC0!=bC1)

bSame = false;

}

if(bSame==false)

continue;

}

//Create graphs G1, and G2.

{

//Copy g into G1 and G2.

for(i=0;i<9;i++)

for(j=0;j<9;j++)

{
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G1[i][j] = g.M[i][j];

G2[i][j] = g.M[i][j];

}

//Remove edge a1,b1 from G1.

G1[a1][b1] = 0;

G1[b1][a1] = 0;

//Add edge a0,b0 to G2.

G2[a0][b0] = 1;

G2[b0][a0] = 1;

//Fill in the neighbours for the vertex a2 in column/row 9.

for(i=0;i<9;i++)

{

//Copy vertex a0.

G1[9][i] = G1[a0][i];

G1[i][9] = G1[i][a0];

//Copy vertex a1.

G2[9][i] = G2[a1][i];

G2[i][9] = G2[i][a1];

}

//Fill in the entry a2,a2.

G1[9][9] = 0;

G2[9][9] = 0;

//Add edge a2,b0 to G1.

G1[9][b0] = 1;

G1[b0][9] = 1;

//Remove edge a2,b1 from G2.

G2[9][b1] = 0;

G2[b1][9] = 0;

}

//Fill the array ReplaceEdgeID[] by calculating the idEdge of G1, G2 once a vertex

//has been removed from class 2.

{

//map[][] is used to remove vertex k+6 in class 2 by mapping vertex i to

//vertex map[k][i] in G1, G2;

long map[4][9] = {

{0,1,2,3,4,5, 7,8,9},

{0,1,2,3,4,5,6, 8,9},

{0,1,2,3,4,5,6,7, 9},

{0,1,2,3,4,5,6,7,8 }};

for(k=0;k<4;k++)

{

ReplaceEdgeID[k] = 0;

for(i=0;i<9;i++)

for(j=0;j<9;j++)
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if(i/3!=j/3)

ReplaceEdgeID[k] |= G1[map[k][i]][map[k][j]]<<EdgeMatrix[i][j];

}

for(k=0;k<4;k++)

{

ReplaceEdgeID[k+4] = 0;

for(i=0;i<9;i++)

for(j=0;j<9;j++)

if(i/3!=j/3)

ReplaceEdgeID[k+4] |= G2[map[k][i]][map[k][j]]<<EdgeMatrix[i][j];

}

}

//Check if any of the possible extremal vertex minimal graphs have the same idEdge as

//ReplaceEdgeID[] by searching through Store[][].

{

bSame = false;

for(i=0;i<8;i++)

for(j=0;j<Found;j++)

{

if(bSame==true)

{

//A graph in Store[][] has an idEdge which matches a member of

//ReplaceEdgeID[].

break;

}

if(Store[j][0].idEdge==-1)

{

//The graph Store[j][0] is not an extremal vertex minimal graph, and

//hence neither are any of the graphs that are strongly-isomorphic to it.

continue;

}

for(k=0;k<1296;k++)

if(Store[j][k].idEdge==ReplaceEdgeID[i])

{

//One of the eight subgraphs of G1, G2 is possibly extremal and

//vertex minimal. So g maybe extremal and vertex minimal.

bSame = true;

break;

}

}

if(bSame==false)

{

//The eight subgraphs of G1, G2 are not extremal or not vertex minimal, hence

//by Lemma 1.4.15 the graph g is not extremal or not vertex minimal.

return true;

}

}

}
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return false;

}

//Creates a graph strongly-isomorphic to gIn by using the vertex mapping given in

//StrongIsoPermute[p][]. The result is stored in gOut (which should be a different object

//to gIn).

void StrongIsoGraph(CGraph& gIn, long p, CGraph& gOut)

{

long i,j;

//Map vertex i in gIn to vertex StrongIsoPermute[p][i] in gOut.

//Fill in hasVertex[].

for(i=0;i<9;i++)

gOut.hasVertex[StrongIsoPermute[p][i]] = gIn.hasVertex[i];

//Fill in M[][].

for(i=0;i<9;i++)

for(j=0;j<9;j++)

gOut.M[StrongIsoPermute[p][i]][StrongIsoPermute[p][j]] = gIn.M[i][j];

//Create the idVertex.

gOut.idVertex = 0;

for(i=0;i<9;i++)

gOut.idVertex |= gOut.hasVertex[i]<<i;

//Create the idEdge.

gOut.idEdge = 0;

for(i=0;i<9;i++)

for(j=0;j<9;j++)

if(i/3!=j/3)

gOut.idEdge |= gOut.M[i][j]<<EdgeMatrix[i][j];

//Fill in classSize[].

for(i=0;i<3;i++)

gOut.classSize[i] = gOut.hasVertex[3*i]+gOut.hasVertex[3*i+1]+gOut.hasVertex[3*i+2];

return;

}

int main()

{

long i,j,n,p,v;

long idVertex[64];

long notIsolatedID;

long idEdge;

bool bStoreChanged;

CGraph g;

//Initialize StrongIsoPermute[][] and construct F7, F9.

SetUp();
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//Go through all possible CGraph::idVertex values and store only those which have class

//sizes that are two or three. We are not interested in graphs with empty vertex classes

//by Theorem 1.2.1, or vertex classes of size one by Lemma 1.4.8.

n = 0;

for(i=0;i<(1<<9);i++)

{

g.AssignVerticesFromID(i);

if(g.classSize[0]>1 && g.classSize[1]>1 && g.classSize[2]>1)

{

idVertex[n] = i;

n++;

}

}

//Initialize the number of graphs found that are possibly extremal and vertex minimal.

Found = 0;

//Generate all possible tripartite graphs by cycling through all possible 27 bit

//integers representing CGraph::idEdge, and all possible CGraph::idVertex values stored

//in idVertex[].

for(idEdge=0;idEdge<(1<<27);idEdge++)

{

g.AssignMatrixFromID(idEdge);

//Work out which vertices have neighbours, and store the result in notIsolatedID.

//This will aid us in creating a well-formed CGraph object. Much like

//CGraph::idVertex, if vertex i has a neighbour then bit i is 1 otherwise it is 0.

//Bit 0 is the least significant bit.

notIsolatedID = 0;

for(i=0;i<9;i++)

for(j=0;j<9;j++)

notIsolatedID |= g.M[i][j]<<i;

for(v=0;v<64;v++)

{

if((idVertex[v] & notIsolatedID)!=notIsolatedID)

{

//If we assign idVertex[v] to g then g will not be well-formed as there will

//exist a non-isolated vertex according to M[][] which is not part of the

//graph according to hasVertex[].

continue;

}

g.AssignVerticesFromID(idVertex[v]);

//Check if we have enough memory to store the graph in Store[][]. Using the

//sizeof operator is a standard trick to get the size of an array.

//sizeof(Store)/sizeof(Store[0]) should equal 200.

if(Found>=sizeof(Store)/sizeof(Store[0]))

{

//We should never run out of memory.

cout << endl << endl;
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cout << "Error: Too many graphs, increase size of Store[][]." << endl;

cout << endl;

return 0;

}

//Start filling in Store[Found][] with all the graphs strongly-isomorphic to g.

for(p=0;p<1296;p++)

{

StrongIsoGraph(g,p,Store[Found][p]);

//If for any reason we wish to discard g and all its isomorphisms, we will

//break out of this loop and deal with removing the graphs from Store[][].

//Note that if Store[x][0] and Store[y][0] are strongly-isomorphic to each

//other. Then the arrays Store[x][] and Store[y][] are just permutations of

//each other. To avoid such duplication we’ll only keep Store[Found][] if the

//idEdge and idVertex of Store[Found][0] is the smallest of all the

//isomorphisms in Store[Found][].

if( Store[Found][0].idEdge > Store[Found][p].idEdge

|| (Store[Found][0].idEdge == Store[Found][p].idEdge

&& Store[Found][0].idVertex > Store[Found][p].idVertex))

break;

//Get rid of graphs whose class size can be reduced, or is too small (i.e.

//those satisfying Lemmas 1.4.10, 1.4.13, and 1.4.14).

if(bBadClassSize(Store[Found][p])==true)

break;

//Get rid of graphs where we can reduce the density of triangles by moving

//edge weights (see Corollary 1.4.5).

if(bCanMoveEdgeWeights(Store[Found][p])==true)

break;

//Get rid of graphs without a triangle (see Theorem 1.2.1).

if(bHasNoTriangles(Store[Found][p])==true)

break;

//Get rid of graphs strongly-isomorphic to F7 (see Lemma 1.4.16).

if(Store[Found][p].idEdge ==F7.idEdge

&& Store[Found][p].idVertex==F7.idVertex)

break;

//Get rid of graphs strongly-isomorphic to F9 (see Lemma 1.4.18).

if(Store[Found][p].idEdge ==F9.idEdge

&& Store[Found][p].idVertex==F9.idVertex)

break;

}

//If p!=1296 we broke out of the loop earlier than expected because

// (i) one of graphs was not extremal or not vertex minimal,

//or (ii) Store[Found][0] was not the graph with the smallest IDs.

//In either case we wish to discard everything in Store[Found][] which we can

//easily do by not updating Found.
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if(p==1296)

{

//We didn’t break out of the loop early. We wish to retain the graphs in

//Store[Found][] which we do by increasing the value of Found.

Found++;

}

}

}

//We have now tested every possible tripartite graph (with class sizes at most three).

//Store[][] holds a list of possible extremal vertex minimal graphs, which we will reduce

//further by repeated applications of Lemma 1.4.15, as implemented by the function

//bCanReplaceBy8(). If Store[i][j] satisfies bCanReplaceBy8() then Store[i][j] and all

//graphs strongly-isomorphic to it (i.e. the graphs in the Store[i][] array) can be

//removed. For speed and convenience we will indicate that they have been removed by

//setting Store[i][0].idEdge to -1.

do

{

bStoreChanged = false;

//Go through each possible extremal vertex minimal graph.

for(i=0;i<Found;i++)

{

if(Store[i][0].idEdge==-1)

continue; //The graph and its isomorphisms have been removed.

for(j=0;j<1296;j++)

if(bCanReplaceBy8(Store[i][j])==true)

{

Store[i][0].idEdge = -1;

//bCanReplaceBy8() depends on Store[][]. Since Store[][] has changed

//there may be graphs that returned false but now will return true. Hence

//we need to re-check those graphs and repeat this process, which we

//indicate by setting bStoreChanged to true.

bStoreChanged = true;

break;

}

}

}while(bStoreChanged==true);

//Display the final list of possible extremal vertex minimal graphs.

DisplayStore();

//Save results to "Output.txt".

if(bSaveToTxtFile==true)

{

fstream OutputFile;

OutputFile.open("Output.txt", fstream::out | fstream::trunc);

if(OutputFile.fail())
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{

cout << endl << endl;

cout << "Failed to open Output.txt." << endl;

cout << endl;

return 0;

}

DisplayStore(OutputFile);

OutputFile.close();

}

cout << "Finished." << endl << endl;

return 0;

}
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Appendix B

DensityBounder

DensityBounder is an implementation of Razborov’s method for calculating up-

per bounds of Turán densities for 3-graphs (see Section 2.2).

The C++ source code can be found in the DensityBounder directory of the

CD-ROM. The program has been tested on Windows XP using Visual C++

2008, and on Ubuntu 9.10 (Linux) using gcc 4.4.1, both running on a Pentium

4 CPU with 1 GB of RAM. The program exits immediately after finishing, and

therefore should be run from a command-line interface rather than through the

graphical user interface.

It is by default setup to calculate an upper bound for π(F ′) (see Section

2.3). This can be changed to π(K−4 ) by commenting out

#define _HYPERGRAPHS_DO_JUMP_

and uncommenting

#define _FORBIDDING_K4MINUS_.

The positive semidefinite matrices can be loaded from precomputed “.soln”

files which can be found in the DensityBounder directory of the CD-ROM. Al-

ternatively the matrices can be computed using DensityBounder and a semidef-

inite program solver.

To compute the positive semidefinite matrices, DensityBounder generates a

“.dat-s” file (the specific name for each problem is stored in the filenameSDP[]

array). The “.dat-s” file will be the input to the semidefinite program solver.

Next we use the solver to output a solution into a “.out” file (given by the

filenameOutput[] array). In particular to get a solution using CSDP’s stan-

dalone solver we type

csdp HypergraphsDoJump.dat-s HypergraphsDoJump.out
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at the command-line. DensityBounder then takes the “.out” file, removes round-

ing errors, and stores the result in a “.soln” file (given by filenameSoln[]).

Once the “.soln” file has been created or loaded, DensityBounder calculates

an upper bound for the Turán density using only integer type variables. It avoids

any use of floating point numbers at this stage so that no rounding errors can

occur.
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Appendix C

DensityChecker

DensityChecker is a program which calculates the upper bounds of Turán densi-

ties for 3-graphs using Razborov’s method (see Section 2.2) from data given in

a text file.

The program’s main purpose is to take a series of types, flags, and matrices,

which constitute a proof of an upper bound, and verify they do indeed form a

proof. The program independently calculatesH, checks all matrices are positive

semidefinite, and calculates the upper bound of the Turán density.

The data DensityChecker needs to make the verification should be provided

in a text file passed to it via the command-line. We provide an example of

such a text file at the end of this section. The C++ source code for Density-

Checker can be found on the CD-ROM in the DensityChecker directory. This

directory also contains the text files S1.txt, S2.txt, S3.txt, S4.txt, S5.txt,

and K5.txt (see Section 2.4.1) which can be passed as input to DensityChecker.

For completeness, we have also provided the files HypergraphsDoJump.txt and

K4-.txt based on the “.soln” files created by DensityBounder (see Appendix B).

#File name: Example.txt

#Everything after a # symbol is a comment and is ignored by DensityChecker. The file format

#is fairly tolerant of whitespace characters (i.e. spaces, tabs, and newline characters) to

#help make the file more readable for humans.

#This file can be found in the DensityChecker folder of the CD-ROM. It describes the data

#given by Razborov in the paper "On 3-hypergraphs with forbidden 4-vertex configurations"

#which proves that the Turan density is 5/9 when we forbid induced four vertex subgraphs to

#have one or four edges. To use DensityChecker to verify the data does prove an upper bound

#of 5/9, type "DensityChecker Example.txt" at the command-line.

#The data file should begin by specifying what program it has been written for.
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Program : DensityChecker

#Next we declare the order of the graphs in our family $\mathcal{H}$. This is denoted by $l$

#in the thesis. The current implementation of DensityChecker can only handle 3-graphs with at

#most nine vertices.

Order of subgraphs H : 6

#Description of the forbidden family $\mathcal{F}$. Note that a 3-graph is represented by

#a number (indicating its order, n say) folowed by a colon then its edge set (assuming its

#vertices are labelled 1,2,...,n).

Number of forbidden graphs : 2

Forbidden graphs :

4 : {123, 124, 134, 234}

4 : {123}

#In the traditional definition of Turan density we forbid the forbidden graphs from appearing

#as subgraphs, and so assign "no" to the following setting. However, in this particular

#problem we wish to forbid the graphs from appearing as *induced* subgraphs so we instead

#set it to "yes".

Forbid only induced subgraphs : yes

Number of terms : 4 #The bound involves four postive semidefinite matrices.

#Each term consists of a positive semidefinite matrix, and the basis it is written in. Each

#member of the basis is a linear combination of flags, hence we also need to define the

#flags and their type.

--- Term 1 --- #The start of the term is indicated by a simple header line.

#This term is equivalent to (9/5)[(e-4/9)^2]_1 in Razborov’s notation.

#We need only define the order of the type. The edge set of the type can be determined from

#the flags. See term 2 for an example.

Order of type : 1

#The common order of the flags, denoted by $m$ in the thesis.

#Note that "order of flags"<=("order of type" + "order of subgraphs H")/2 must hold.

Order of flags : 3

#The number of flags in the flag list below.

Number of flags : 2

#The dimension of the matrix.

Matrix dimension : 1

#The edge sets of the flags used in describing the basis.

#The order of the flags has already been defined. The labelled vertices of the flag (which

#describe the type) are the vertices 1,...,"order of type". In this case there is only one

#labelled vertex: the vertex 1.

Flags :

F1 : {}

F2 : {123}

142



#The basis the matrix is written in.

#Each element of the basis is a linear combination of flags in the form:

#<a rational coefficient>(<label of the flag in the flag list above>) + ...

Basis:

B1 : 5/9(F1) - 4/9(F2)

#The entries of the matrix.

#The program expects to read in a list of rational numbers separated by whitespaces, which

#represent the entries (1,1), (1,2), ..., (1,"matrix dimension"), (2,1), (2,2), ... etc.

Matrix :

9/5

--- Term 2 ---

Order of type : 4

Order of flags : 5

Number of flags : 17

Matrix dimension : 4

#The order of the type is four. Hence the labelled vertices are 1,2,3,4. By looking at the

#flag "F1" we can determine the edge set of the type is {124, 134, 234}, this is denoted by

#$\tau_1$ in Razborov’s paper.

Flags :

F1 : {124, 134, 234, 135, 235, 145, 245}

F2 : {124, 134, 234, 125, 235, 145, 345}

F3 : {124, 134, 234, 125, 135, 245, 345}

F4 : {124, 134, 234, 125, 135, 235, 245}

F5 : {124, 134, 234, 125, 135, 235, 345}

F6 : {124, 134, 234, 125, 135, 235, 145}

F7 : {124, 134, 234, 125, 135, 235}

F8 : {124, 134, 234, 145, 245, 345}

F9 : {124, 134, 234, 135, 235, 245}

F10 : {124, 134, 234, 125, 235, 345}

F11 : {124, 134, 234, 135, 235, 145}

F12 : {124, 134, 234, 125, 235, 145}

F13 : {124, 134, 234, 125, 135, 345}

F14 : {124, 134, 234, 125, 135, 245}

F15 : {124, 134, 234, 245, 345}

F16 : {124, 134, 234, 145, 345}

F17 : {124, 134, 234, 145, 245}

Basis :

B1 : (F1)+(F2)+(F3)-(F4)-(F5)-(F6)

B2 : (F1)+(F2)+(F3)+2(F7)-(F8)

B3 : (F9)+(F10)+(F11)+(F12)+(F13)+(F14)

B4 : (F15)+(F16)+(F17)

#The matrix M_1 in Razborov’s paper (multiplied by 9/5).

Matrix :

96/40 -12/40 -66/40 75/40

143



-12/40 48/40 3/40 -39/40

-66/40 3/40 51/40 -51/40

75/40 -39/40 -51/40 81/40

#We have used whitespaces to arrange the entries as they would appear in a matrix. This is to

#make it easier to read for humans. DensityChecker treats this the same as:

#Matrix: 96/40 -12/40 -66/40 75/40 -12/40 48/40 3/40 -39/40 -66/40 3/40 51/40 -51/40 75/40

#-39/40 -51/40 81/40

--- Term 3 ---

#The type is {134, 234} denoted by $\tau_2$ in Razborov’s paper.

Order of type : 4

Order of flags : 5

Number of flags : 15

Matrix dimension : 5

Flags :

F1 : {134, 234, 125, 135, 235, 145, 245}

F2 : {134, 234, 135, 235, 145, 245}

F3 : {134, 234, 345}

F4 : {134, 234, 125, 135, 235, 245}

F5 : {134, 234, 125, 235, 145, 245}

F6 : {134, 234, 125, 135, 235, 145}

F7 : {134, 234, 125, 135, 145, 245}

F8 : {134, 234, 125, 235, 145, 345}

F9 : {134, 234, 125, 135, 245, 345}

F10 : {134, 234, 125, 235, 145}

F11 : {134, 234, 125, 135, 245}

F12 : {134, 234, 145, 245, 345}

F13 : {134, 234, 135, 235, 345}

F14 : {134, 234, 145, 245}

F15 : {134, 234, 135, 235}

Basis :

B1 : (F1)-(F2)

B2 : (F1)-(F3)

B3 : (F4)+(F5)+(F6)+(F7)

B4 : (F8)+(F9)

B5 : (F12)+(F13)

#The matrix M_2 in Razborov’s paper (multiplied by 9/5).

Matrix :

192/40 -60/40 18/40 -126/40 132/40

-60/40 120/40 75/40 -123/40 -57/40

18/40 75/40 84/40 -165/40 -3/40

-126/40 -123/40 -165/40 393/40 -54/40

132/40 -57/40 -3/40 -54/40 99/40

--- Term 4 ---

#The type is {134, 234} denoted by $\tau_2$ in Razborov’s paper.
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Order of type : 4

Order of flags : 5

Number of flags : 15

Matrix dimension : 1

Flags :

F1 : {134, 234, 125, 135, 235, 145, 245}

F2 : {134, 234, 135, 235, 145, 245}

F3 : {134, 234, 345}

F4 : {134, 234, 125, 135, 235, 245}

F5 : {134, 234, 125, 235, 145, 245}

F6 : {134, 234, 125, 135, 235, 145}

F7 : {134, 234, 125, 135, 145, 245}

F8 : {134, 234, 125, 235, 145, 345}

F9 : {134, 234, 125, 135, 245, 345}

F10 : {134, 234, 125, 235, 145}

F11 : {134, 234, 125, 135, 245}

F12 : {134, 234, 145, 245, 345}

F13 : {134, 234, 135, 235, 345}

F14 : {134, 234, 145, 245}

F15 : {134, 234, 135, 235}

#The element g_0 in Razborov’s paper.

Basis :

B1 : -(F4)+(F5)+(F6)-(F7)+2(F8)-2(F9)+2(F10)-2(F11)

Matrix :

9/10 #9/5 times 1/2.
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Appendix D

Checking the Hypercube Turán

Densities

HypercubeEdgeDensityChecker and HypercubeVertexDensityChecker are programs

which take text files as input and uses the data they contain to calculate upper

bounds for πce(F) and πcv(F) respectively (see Sections 2.5.2 and 2.5.3). They

behave much in the same way as DensityChecker (see Appendix C).

The C++ source code for HypercubeEdgeDensityChecker can be found in

the HypercubeEdgeDensityChecker folder on the CD-ROM. The folder also

contains the files B.txt and B1B2.txt which can be passed as input to Hyper-

cubeEdgeDensityChecker. The files follow a similar format to those created for

DensityChecker. The differences are highlighted and explained via the comments

in B.txt.

The C++ source code for HypercubeVertexDensityChecker can be found in

the HypercubeVertexDensityChecker folder on the CD-ROM. The folder also

contains the input files B3-.txt, B3.txt, and B4B5.txt. They follow a similar

format to those created for DensityChecker. The file B3-.txt has been com-

mented to highlight the differences.
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[18] P. Frankl, and V. Rödl, Hypergraphs do not jump, Combinatorica, 4 149–

159, (1984).

[19] J. Goldwasser, Personal communication, (2010).

[20] G. Hurlbert, and V. Kamat, Erdős–Ko–Rado theorems for chordal and
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