4,773 research outputs found

    Solving a "Hard" Problem to Approximate an "Easy" One: Heuristics for Maximum Matchings and Maximum Traveling Salesman Problems

    Get PDF
    We consider geometric instances of the Maximum Weighted Matching Problem (MWMP) and the Maximum Traveling Salesman Problem (MTSP) with up to 3,000,000 vertices. Making use of a geometric duality relationship between MWMP, MTSP, and the Fermat-Weber-Problem (FWP), we develop a heuristic approach that yields in near-linear time solutions as well as upper bounds. Using various computational tools, we get solutions within considerably less than 1% of the optimum. An interesting feature of our approach is that, even though an FWP is hard to compute in theory and Edmonds' algorithm for maximum weighted matching yields a polynomial solution for the MWMP, the practical behavior is just the opposite, and we can solve the FWP with high accuracy in order to find a good heuristic solution for the MWMP.Comment: 20 pages, 14 figures, Latex, to appear in Journal of Experimental Algorithms, 200

    Parallel ACO with a Ring Neighborhood for Dynamic TSP

    Full text link
    The current paper introduces a new parallel computing technique based on ant colony optimization for a dynamic routing problem. In the dynamic traveling salesman problem the distances between cities as travel times are no longer fixed. The new technique uses a parallel model for a problem variant that allows a slight movement of nodes within their Neighborhoods. The algorithm is tested with success on several large data sets.Comment: 8 pages, 1 figure; accepted J. Information Technology Researc

    An interacting replica approach applied to the traveling salesman problem

    Full text link
    We present a physics inspired heuristic method for solving combinatorial optimization problems. Our approach is specifically motivated by the desire to avoid trapping in metastable local minima- a common occurrence in hard problems with multiple extrema. Our method involves (i) coupling otherwise independent simulations of a system ("replicas") via geometrical distances as well as (ii) probabilistic inference applied to the solutions found by individual replicas. The {\it ensemble} of replicas evolves as to maximize the inter-replica correlation while simultaneously minimize the local intra-replica cost function (e.g., the total path length in the Traveling Salesman Problem within each replica). We demonstrate how our method improves the performance of rudimentary local optimization schemes long applied to the NP hard Traveling Salesman Problem. In particular, we apply our method to the well-known "kk-opt" algorithm and examine two particular cases- k=2k=2 and k=3k=3. With the aid of geometrical coupling alone, we are able to determine for the optimum tour length on systems up to 280280 cities (an order of magnitude larger than the largest systems typically solved by the bare k=3k=3 opt). The probabilistic replica-based inference approach improves koptk-opt even further and determines the optimal solution of a problem with 318318 cities and find tours whose total length is close to that of the optimal solutions for other systems with a larger number of cities.Comment: To appear in SAI 2016 conference proceedings 12 pages,17 figure

    A hybrid heuristic solving the traveling salesman problem

    Get PDF
    This paper presents a new hybrid heuristic for solving the Traveling Salesman Problem, The algorithm is designed on the frame of a general optimization procedure which acts upon two steps, iteratively. In first step of the global search, a feasible tour is constructed based on insertion approach. In the second step the feasible tour found at the first step, is improved by a local search optimization procedure. The second part of the paper presents the performances of the proposed heuristic algorithm, on several test instances. The statistical analysis shows the effectiveness of the local search optimization procedure, in the graphical representation.peer-reviewe
    corecore