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A HYBRID HEURISTIC SOLVING THE TRAVELING
- SALESMAN PROBLEM

Mircea ANCAU! and Liberato CAMILLERI

ABSTRACT: This paper presents-a new hybrid heuristic for solving the Traveling Salesman Problem. The
dlgorithm is designed on the frame of & general optimization procedure which acts upon two steps,
iteratively. In the first step of the global search, a feasible tour is constructed based on insertion approach.
In the second step the feasible tour found at the first step, is improved by a local search optimization
procedure. The second part of the paper presents the performances of the proposed heuristic algorithm, on
several test instances. The statistical analysis shows the effectiveness of the local search optimization

procedure, in the geaphical representation.
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1 INTRODUCTION

The Traveling Salesman Problem (TSP) plays
an important role in the field of combinatorial
optimization WP-hard problems. As a discrete
optimization problem, the TSP is very difficult to
solve optimally in polynomial time, despite its
simplicity. It can be stated as follows: given n cities
and an (n » n} matrix d; whose elements denote the
distance between each pair i and j of the n cities, a
tour is defined as a closed path which traverses each
city exactly once. The problem is to find the path of
minimum length ie. the hamiltonian path. However
solving the TSP as an NP - hard problem is not
impossible, even if such an algorithm that may
solve any of these problems to optimal does not
exist (Goertzel, 1993). Only an approximate
solution can be expected, which is not too far from
the true optimum. Many researchers consider that
the existence of such algorithm is undecided in the
sense of the Gédel theorem, which states that if
neither the existence of such an algorithm cannot be
demonstrated, nor can its inexistence. A simple
approach to solve the TSP is to list all the possible
paths between the cities, then compare all the path
lengths to find out which one is the shortest
Unfortunately there are too many paths. For n cities
ellxyys, (=1, 2, .., n), and the distances between
cities obeying the conditions d{e,¢;) = 0 for every
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iz}, and d{ci,c) =0, (i=1, 2, ..., n}, the problem is
called symmetric if dic,e) = digyes, (i=1, 2, ...,
n). The possible paths, also called tours, increase if
the number of the cities increases. In the case of the
symmetric TSP, for n cities, the possible tour
numbers Ny(n) = (n-1)l/2. So, for 10 cities there are
M(10) = 181,440 different tours, for 15 cities Ny(15)
= 43,589,145,600 different tours and so0 on. When
the number of the cities increases, it can easily be
seen that exhavstive exploration of all possible tours
becomes impracticable, despite the performances of
actual computers.

Mevertheless, years of researches in the field of
optimization techmiques as well as the rapid
development of the memory amount and the speed
of the computers, have lead to astonishing solutions
to these problems. So, in the last 25 years, the
record for the most complex combinatorial
optimization problem, solved to optimum, increased
from 318 cities (Crowder and Padberg, 1980) to
2390 cities (Padberg and Rinaldi, 1987) and 7397
cities (Applegate and Cook, 1993). This last result
required the eguivalent of at about 4 years CPU
time on a SPARC station (Johnson and McGeoch,
1997). Today, problems of 100 cities are solved in
seconds or minutes, while problems of 1000 cities
or more are solved within hours or days (Padberg
and Rinaldi, 1991), (Grotschel and Holland, 15913,
{Applegate and Coock, 1993). Anyway, the TSP
remains a very difficult problem to solve exactly. It
is not only difficult to find out the solution, but even
to know its exact value, the so called Held-Karp
lower bound. Fer test instances not very large, there
is a way to calculate the optimum value exactly, by
linear programming techniques. For other test
instances this lower bound may be numerically
estimated (Johnson and McGeoch, 1997). In any
case, what we may hope in most of the situations is
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an approximate solution only, called Probably
Approximately Correct (PAC) solution.

Maost of the researchers state that there are two
possible approaches for solving combinaterial
optimization problems: either an optimization
algorithm in the strict sense of the word, yielding a
globally optimal solution, or an approximation
algorithm yielding a very good or possibly optimal
solution. A good start for solving the TSP might be
a tour developing method, usually a greedy ons,
which produces a valid solution using a growing
process. Another way is to begin from a valid tour
and, using a technigue based on local search, to get
a better solution. Such solving methods are called
heuristics (the word heuristic is an adjective
involving thought and investigation as a method of
problem solving -from Greek hewriskein meaning to
discover). Concerning the operational principle, the
heuristic methods for solving the TSP may be
generally divided in two classes called rour
construction hewristics and successive augmentation
heuristics.

Within the fowr comstruction heuristics, the
best known are the Nearest Meighbour, the Greedy,
the Clarke-Wright and the Christofides. The MNearest
Meighbour heuristic is based on a simple rule which
imposes each time, going mext to the nearest
unvisited location (Rosenkrantz et al. 1977). The
tour fraverses the cities in the constructed order,
returning in the first city after visiting the last one in
the fist. In the case of the Greedy heuristic, the set
of cities is viewed as a complete graph with cities as
vertices and the distances between each pair of
cities as graph edges.

The tour is the hamiltonian path in the graph
(Bentley, 1992). The Clarke-Wright heuristic
(Frieze, 1979) starts with a psendo<tour in which
one city serves as a central node, also called hub,
and all the remaining cities are connected with the
hub by two edges, This pseudo-tour starts from the
central node and, after visiting each city, the
salesman returns to the central node. The rule of the
tour construction allows to bypass the hub if this
change does not increase the tour length and also if
one city does not become adjacent to more than two
cities.

The algorithm of the Christofides heuristic
starts by constructing a minimum spanning tree and
computing a minimum-length matching on the
vertices of odd degrees in the tree. Combining these
two trees what can be obtained is a connected graph
in which every vertex has even degree (Lawler,
1985). This graph must contain a cycle that passes
through each city exactly once. Experimental

results, on tour construction heuristics showed on
random euclidian instances an average percent
excess over the Held-Karp lower bound within 23 +
25% for the Mearest Neighbour, 14.2 + 19.5% for
the Greedy, 9.2 + 12.2 for the Clarke-Wright, 9.5 +
©.9% for the Christofides (Johnson and McGeoch,
1997).

The group of swuccessive augmentation
heuristics includes 2-Opt, 3-Opt as simple tour
modifications, k-Opt as a generalization of the
previous, Tabu Search with variants, Simulated
Annealing with variants, Genetic Algorithms and
Neural Network with variants. The basic approach
to these heuristics is the iterative improvement of a
set of randomly selected feasible solutions. The
main steps are:

a) Generation of a pseudo-random feasible
solution S that satisfies the criterion wvalid
four;

b) Attempt to find an improved {feasible
solution S, by means of some
transformation of S;

¢) Ifan improved solution is found, i.e. Length
(S,) < Length (8), then replace S by S,
repeat from step (b);

If no improved solution can be found, then S is

the locally optimum solution. Repeat from step (b}
until computation time runs out or answers are
satisfactory.

The group of 20pt and 30pt heuristics may be
viewed as a neighbourhood search process, where
each tour has an associated neighbourhood of
adjacent tours. The algorithm removes two or three
edges, therefore breaking the tour into two or three
subtours and, after that, reconnects the path in
another way (Croes, 1958). There is one remark to
be made here. 1If we restrict only to 20pt moves
which remove crossings (i.e. those that delete from
the tour two cdges that intersect at a common
point):

a) such moves cannot cause the increase of the
tour length (under the euclidean norm) due
to the triangle inequality;

b) such moves may introduce new crossings.
Although, at most, n® moves are sufficient
to remove all crossings, where n is the
number of the cities in that instance
{Johnson and McGeoch, 1997).

The kOpt moves are a generalization of the

20pt and 30pt moves. As 30pt moves do, the kOpt
moves may make the escape from a local optimum

possible, but the running time is considerably
slower,
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Tabu Search algorithms are based on the
observation that not all locally optimal solutions
need be good solutions. This is why it modifies the
local optimization algorithm by means of a
technique which enables it to escape from the local
optimum and continue to search (Glover, 1986),
(Enox, 1994). These algorithms are based mainly
on 20pt, but differ from to the nature of the tabu list
and the implementation of aspiration level. The Lin-
Kemighan algorithm is a generalization of the 30pt
and has much in common with the Tabu Search
(Lin and Kemnighan, 1973).

The Simulated Annealing algorithms introduce
a control parameter of the optimization process,
which is similar to the temperature in the metallurgy
processes of the amnealing of metals. The
temperature parameter is gradually reduced from a
higher value to zero, In this way, the step by step
optimization process suffers some modifications
from the random way, in which every movement is
accepted and wms inte a greedy way where
perturbations are forbidden,

The system is transferred from  one
configuration of higher emergy into another one
with lower energy and ordered configuration. In the
Simulated Annealing (Kirkpatrick, 1983) every
improvement is accepted without reserve, while
deteriorations are accepted with a probability
(Metropolis et al. 1953). '

Some variants of the Simulated Annealing
algorithms, such as the Threshold Accepting
(Dueck and Scheuer, 1990) use a deterministic
update rule by which a perturbation is accepted only
if the made deterioration does not exceed a
threshold value (Moscato and Fontanari, 1990).
Another variant solves the TSP based on different
types of physical processes, such as the inverse of
the diffusion process (Ugajin, 2002).

The idea of wusing genetic algorithms as
optimization approaches is not guite new. The
genetic algorithms are models of machine learning,
based on the biological evolution of population of
individuals, The searching process begins by the
generation of k starting solutions S = {5,, ..., 5}
which is applied to a local optimization algorithm.

The local optimum solutions found at this step
will replace the previous starting solutions in 8. The
optimization process uses different subsets from S,
of different size and. combining them bv
randomized crossover operations, creates new
solutions that reflects the aspects of the previous
best solutions, wusing a selection strategy
(Valenzuela and Jones, 1994),

The neural net approaches may be divided in
two major groups. The first group is based on
commenly applicable algorithms, in which the
neuwrons are organized according to some
formulation of the TSP as an integer program
(Peterson and Sdderberg, 1989), (Xu and Tsai,
1991). The second group is limited to geometric
instances and is based on algorithms in which
neurons are at first viewed as vertices of a polygon.
This polygon extends and deforms iteratively in
such a way that this vertices will at last match the
cities. The resulting distorted polygon will look
finally as a tour. There are two variants of these
methods, the elastic net (Peterson, 1990), (Simmen,
1991} and the self-organizing map (Angéniol et al.,
1988), (Kohonen, 1988).

2 THE PRINCIFLE OF THE
OFTIMIZATION ALGORITHM

Traveling salesman problem faced us up to a
combinatorial optimization problem, which has
multiple local optimal points and one or maybe
more absolute optimal points. There are also too
many possible tours and that puts exhaustive
exploration of all tours out of the question. In the
handling of multiple local optimal points, it is
suitable to apply a global search procedure, such as
the Monte Carlo method, followed by a local search
process in the neighbourhood of the previously
found solution. If you want to find out an optimum,
the Monte Carlo method requires the trying of many
different points from the solution space at random
and seeing which one of these is the best,

If you check out a sufficient amount of
different points, the best you will find will be
almost certainly a reasonable guess at the best
overall. At this moment we must make the remark
that by different points we do not suggest different
tours at random. The tour consiruction procedure is
generally dependent on the order in which cities are
inserted. A. tour construction procedure in which the
cities are inserted at random and in a different
random order at each iteration, will follow the
Monte Carlo method as a global search procedure.

The first step in the heuristic algorithm is
reading the initial data in the form of a tsp file and
then building the distance matrix. The distance
matrix is the largest memory consumer, but the
consume can be optimized taking into account that
for the symmetric TSP, the matrix elements are
symmetric to the main matrix diagonal. After the
step of the construction of the distance matrix, two
procedures of tour construction and local search are
iteratively executed, until the stopping condition is
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fulfilled. The criterion of the iteration number was
used as a stopping condition.

by step the subtour extends until the complete tour
is formed.

Read initial data and build distance matrix;
while { stopping condition not satisfied)
{
N The tour construction as global search procedure
Generate random permutation of n cities;
Setup a partial tour with the first three cities from
the above permutation;
Insert cities in the tour, based on the condition of
minimum tour length increasing;

! Local search procedure
Imprave the tour by shifting 20pt, 30pt and 40pt;
Check and remove crossing segments;
Calculate the tour length;
if (actual tour length < previous minimum
tour length) |
Minimum tour length = Actual tour length;

¥

Figure 1. The main steps performed by the heuristic
algorithm

2.1 The tour construction algorithm

The (x,y) coordinates of the n cities are stored
in an array of structures, together with an integer
variable which takes into account the index of cities
from the tsp file. In the same structure of cities there
is a variable which can take the value zero or one,
depending on the fact that the city was visited or
not. Parallel to the array of structures of the cities,
there is an array of pointers in which structure
elements addresses are stored. To speed up the
computation, instead of moving structure elements,
only pointers are moved.

The first step in the construction of the tour
algorithm a random sequence of integers from 1 to
n, is gencrated as a permutation. In ANSI C the
ramd() function retuns a value of type int (2 two
byte quantity on many machines), which must be at
most 32767. This can be a serious impediment
especially in the Monte Carlo approach. In
generating a random instance, the portable random
numbers generator ran/{) of Park and Miller (Press
et al,1997) was used, which has a period bigger than
10%. Once the permutation is generated, its sequence
is assigned to the array of pointers in which the
addresses of cities structures elements are stored.

The tour construction procedure starts with a
subtour made by the first three cities from the
permutation order. The rest of the cities, in the
random permutation order, will be inserted one by
one, in this subtour, in a position done by the
minimum increasing cost criterion. In this way, step

ff the generation of n random permulations
fori=0ton

plil=i;
fori=0wn

/f call the random number generator ranf (-
rin = random integer mumber, between i to (n-i);
exchange p[i] with p[rin]:

I Assign the order gf the pointers eccording to the
array pfi]
witich stores the random permutation
fori=01to (n-13}
pointer of city [i] = the address of city [pli]]:
pointer of city [n] = the address of city [p[0]];

Figure 2. The random permutation algorithm

2.2 The local search algorithm

The tour construction procedure described
above depends on the order in which the cities are
inserted. If we start again the construction of the
tour, using another insertion order of the cities the
result will be different.

This feature can be exploited as in a Monte
Carlo procedure. For a large amount of different
cities insertion orders we may retain the best tour
variant. But this approach is too slow and the tour
constructed at this first step usually has many points
of intersection between tour segments. This is not
an impediment because we can remove the cross
sections and improve the tour. The 20pt, 30pt and
40pt moves were preferred as & local search
approaches to the tour.

The 20pt approach deletes two ssgments, thus
breaking the tour in two paths, and then reconnects
those paths in a way that minimizes the tour cost.
Any removed crossing leads to a shorter tour, due to
the wiangle inequality, But it should be remarked
that one 20pt move may introduce new crossings
{see Figure 3).

Mevertheless it is known that, at most,
uncrossing 20pt moves are enough to remove all
crossings (Jolmson and McGeoch,1997) where n is
the number of the cities.

In a similar form, the 30pt and 40pt moves
delete three or four segments respectively, from the
tour, breaking the tour in three or four paths
respectively, and then reconnect those paths in the
way that also minimizes the tour cost.

There are several ways for breaking the tour
and for reconnection, by 30pt and 40pt moves.

20 ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, VOL. 5, NO.4/2007



TECHNICAL PAPERS

a) b)

Figure 3, The crossings removal of two segments by a
20pt move, may introduce pew crossings. Case a) one
crossing to be removed by 20pt move; b} the

~ appearance of two new crossings

It may be mentioned that these last two of
moves may be effective even if the tour segments
do not intersect.

for i=0 to n-3
iff ( dicity[i],city[i+1]) +
d{eity[i+2] city[i+3]) =
dicity[i],city [i+2]) +
dieity[i+1],city[i+3]) }
{

swap = city[i+1];
city[i+1] = city[i+2];
city[i+2] = swap;

Figure 4. The algorithm of 20pt moves

fori= 01 n-6
] (l(eity(il, ity (i+1]) + d(city[F+2)city [i+3]) +
d(city[i+4).city[i+5]) > (d(city[i] city[i+3]) +
dicity[i+1]city[i+4] + dicity[i+2])eity[i+5]) )

swapl = city[i+1]:
city[i+1] = city[i+3);
city[i+3] = swapl;
swapl = city[i+2];
city[i+2] = city[i+4];
cityfi+4] = swapl.;

Figure 5. One type of the 30pt moves

The algorithm of the 20pt moves, seen in
Figure 4, tests the distance length condition between
the end points of the first and the third segments of
the tour. If the condition holds then the end point of
the first segment will be exchanged by the start
point of the third segment. In the following, we
check the condition between the end points of the
second and the fourth segments of the tour, and so
on. The tests continues until we reach the last
segment of the tour ielcpitn). As the segment
{c.c)) does not enter in this verification, the
algorithm makes a shift of the indices in the cities
tour with k positions. In this way, the next

verification will enclose the former segment (cucy).
The same shift motion of the indices in the cities
tour with k position is applied after each passing of
the tour in the 30pt and 40pt algorithms of moves.
Figure 5 shows an example of a 3O0pt move, in
which the exchange of the end points of segments
does not change the order of the cities included in
the partial paths between the checked segments. To
guarantee the correctness of the tour, a routine
which finds out and removes crossings between tour
segments, was inserted, becanse we do not need to
increase the running time by using to many kOpt (k
=32, 3, 4) moves,. This routine does not calculate the
intersection point, but it is based on the cross
product of two vectors i.e, tour segments (Cormen
et al,2003).

3 NUMERICAL RESULTS

Several numerical tests wers performed in
order to establish the performances of the heuristic
hybrid algorithm. The main source for the test
instances was the TSPLIB database, available via
anonymous fip from softlib.rice.edu. The advantage
of the problems from this source is that the
optimum solution is already known.

The test problems were grouped in small
instances where the number of the cities is between
one to few hundreds, and medium to large
instances, which have more than one thousand
cities. Numerous runs were carryed out for each test
instance on & Personal Computer, with an Intel
Pentium processor at 1.6 GHz, 496 MB of RAM.
The optimality ratio p, which expresses the quality
of the results, was defined as:

p=|uﬂ-[§9ﬂ:—%]%; . '6))

a

(=273

whers:
- S..q represents the sofution cost,
= Oy is the optimal cost.

Tahble 1. Optimality ratios for several test instances

from TSPLIB
Test instance |  Iteration Dp“":::fg]mm
kroal 21,285 0.0
krob 100 22,197 (.25
krocl 00 20,750 0.00
kroel 00 22,165 (.43
kroa200 1,410,889 0.86
lin103 36,708 0.02
rd100 133,219 .00
eil101] 10,650,820 206
bierl 27 139,705 424 0.25
chl30 34,564,567 0.00
a8 5,951 4,76
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rd4a0
rats73

139,856 3.25
3,556,544 5.52

In Table 1, 13 test instances and their
optimality ratios in percent are listed, as well as the
iteration at which these ratios were aftained. In most
of these test instances, the results reached exactly or
almost the optimal value. The results are situated
much under 1 percent above the optimal value. An
exemption is the eill0l problem where, after
10,650,820 iterations, the result achieved has an
optimality ratio of 2.06 percent higher than the
optimal value. The test instances a280, rd400 and
rat5375 have a higher optimality ratio but, as we can
see, the iteration number was not so high.
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Figure 6. History of iterations for kroal00, krob100,
krocl00 and kroelO0
All of the run tests presented in Figure 6 and
Figure 7 were completed according to the heuristic
alzorithm principles presented in Figure 1.
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Figure 7. History of iterations for rd100, €ill01,
bier127, ¢ch130 and aZ80

Consequently at each iteration, the tour
construction - procedure (i.e. global search) was
followed by a local optimization (i.e. local search).
To find out the progress made by the local
optimization procedure, several tests were
completed using the heuristic algorithm with tour
construction procedure without and with local
gearch optimization procedure respectively. Figure
8 shows the optimization progress in these two
situations.

As we can see from Figure 8, local search
optimization procedure improves the performance
of the heuristic algorithm with few percent,
especially at the beginning of the search process.

A

Gy a ® tour construction +
= 4 ioa lacal optimestion
= i
= " A

: L :“ i & LOUT CONSIRIElnn

(1] o wilhput loeal

I hLi} 100 1000 10000 [00000
Mismber of kerabions

optimization

Figure 8. History of iterations for kroclD0 without
and with local optimization
There is almost always a gap of at least two to
five percent between these two cases in the first one
thousand iteration and the gap decreases as the
number of iteration increases to a great extent. This
is why the local optimization procedure plays an
important role in the algorithm performance.
Tahle 2. Optimality ratios for Iai-ge instances from

TSPLIB
Test instance Iteration D]!timaiit}r
ratios p [%a]
dsj 1000 654,641 &.15
_dl655 233,173 12,61
d2103 31a392 15.81
ul432 1406278 8.67
ulls2 350,787 15.97

When the number of cities in the test instance
exceeds one thousand, the search progress becomes
quite slow. This iz justifiable while the tour
construction procedure is based on a random
permutation approach, i.e. Monte Carlo method. As
the number of the cities becomes higher, the
number of frials in the random permutation
approach must increase to a great extent to cover
the interval of possible sofution uniformly. It means
that, depending on the type of selecied convergence
criterion of the algorithm, the iteration number or
the running time have to increase accordingly.

Jo determine the efficiency of the hybrid
heurjstic procedure, for kroal(0 test problem, there
were performed 50000 iterations. The results before
and after the action of the local search procedure
were saved at each iteration. In order to determine
whether the two distributions differ significantly
there were categorized the minimum path lengths,
derived from both optimization methods, into nine
categories. Each category covers a range of 500. It
is evident from the Table 3, that there are very large
discrepancies between corresponding counts.

Let O, be the frequency of the /" minimum

path length category comesponding to the
optimization method not using local search. Let E;
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be the frequency of the i"minimum path length
category corresponding to the optimization method
using local search.

Table 3. The frequency table

Without local| With local
search search
Less than 21750 560 5248
21750 - 22250) 5338 17356
22250 - 22750 12112 14086
22750 - 23230 13309 2412
23250 - 23750 10411 3786
23750 - 24250 5749 977
24250 - 24750 1984 126
24750 - 25250 454 &
| IMore than 25250 33 i |
Let E, be the frequency of the i" minimum
path length category corresponding to the

optimization method using local search. To
measure the discrepancy between O, and £, we use

the statistic X* given by:

k 2
x? :Z ['C’, _E;) : (2)
i=l 'Ei
where k is the number of categories. The larger the
value of X* the less the agreement between the
frequencies O, and E,. The statistic X has a chi-
squared distribution with %1 degrees of freedom.

The p-value is the criterion to determine
whether the discrepancy between O, and E, is

significant (see Table 4). If the p-value exceeds the
0.05 level of significance, we accept the null
hypothesis that the two distributions of minimum
path lengths are identical. Conversely, if the p-
value is less than the 0.05 level of significance we
deduce that the discrepancy between corresponding
frequencies differ significantly, implying that the
two distributions have contrasting shapes. For a
large value of X*(78862.2), the p-value is expected
to be wvery small, indicating that the two
distributions are different.

Tahle 4. Test statistics

Category
Chi-Sguare T3862.179
df B
P-value 0.000

Moreover, statistical measures for central
tendency, dispersion, peakedness and symmetry for
the two distributions are very contrasting. By
comparing the mean, standard deviation, Kurtosis
and skewness of the two distributions (see Table 5},
one notices that the two-step optimization procedure
is yielding a higher proportion of minimum path

lengths that are closer to the optimal solution
(21285} implying that it is more efficient than the
one step-procedure.

Table 5. Statistics

Without local | With local
search search
N S0000 50000
Mean 23056.3471 224141705
Median 23006.8603 223221387
Sud, Deviation 685.75857 58348231
Skewness 363 A38
Kurtosis - 189 037
Minimum 2132274 21285.44
Maximum 2608820 25329.03

This fact is very well shown in Figure 2 by the
the distribution of the minimum path length, fim
kroal 00 test problem, displayed on a normal curve.

200 |
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»
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Figure 9. The distribution of the minimum path
length, for kroall0 test problem

It can be easily seen how much influence the
local search procedure has on the distribution of the
iterative search results, that tend to move towards
the optimum direction. The more efficient the local
gearch procedure is, the larger the difference
between the two distributions in the Figure 9 will
be.

4 CONCLUSION

In this paper was presented a hybrid heuristic
for solving the Traveling Salesman Problem,
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designed on the frame of a general optimization
procedure which act upon two steps, iteratively. In
the first step of the global search, a feasible tour is
constructed based on insertion approach. In the
second step the feasible tour found at the first step,
is improved by a local search optimization
procedure,

One of the hard problems of the algorithm
design was not only to gemerate a random
permutation, but to avoid the repetition of the same
permutation sometime, along the iterative steps of
the search process. This thing is more complicated
to verify as the number of the cities becomes higher.
Because there is a strong connection between the
probability of escape from a local optimum point
and the random permutation sequence in which the
cities are inserted in tour, a main future research
consideration will be the improvement of the
procedure which generates the random permutation
of the cities. The statistical analysis of the kroal00
test problem shows the effectiveness of the local
search optimization procedure, in the graphical
representation.

A key point in the future research will be the
improvement of the local search procedure. For the
moment, only kOpt moves were used as a local
search approach. Now, the results are close to those
of the similar heuristic technmigues from the

literature, An intensive search in the neighbourhood

of good solutions by making some perturbations,
similar to the Simulated Annealing or the use of the
search history to determine the so called backbones
{Schneider,2002), (Schneider,2003), might be a
possible approach in the improvement of the local
gearch that will follow.
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