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A HYBRID HEURISTIC SOLVING THE TRAVELING 
SALESMAN PROBLEM 

Mircea ANCAU1 and Liberato CAMILLERI1 

ABSTRACT: This paper presents• a new hybrid heuristic for solving the Traveling Salesman Problem, The 
algorithm is designed on the frame of a generaJ optimization procedure which acts upon two stepS., 
iteratively. In tfi~ first step of the globaJ search, a feasible tour is constructed based on insertion approac.h. 
In the second step the feasibl~ tour found at the first step, is improved by a toea) search optimization 
procedure. The second part of the paper presents the performances of the proposed heuristic algorithm, on 
several test instances. The statistical analysis shows the effectiveness of the local search optimization 
procedure, in the graphical representation. · 
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1 INTRODUCTION 

The Traveling Salesman Problem (TSP) plays 
an important role in the field of combinatorial 
optimization NP-hard problems. As a discrete 
optimization problem, the TSP is very difficult to 
solve optimally in polynomial time, despite its 
simplicity. II can be stated as follows: given n cities 
and an (n x n) matrix d;; whose e lements denote the 
distance between each pair i and j of the n cities, a 
tour is defmed as a closed path which traverses each 
city exactly once. The problem is to find the path of 
minimum length i.e, the hamiltonian path, However 
solving the TSP as an NP - hard problem is not 
impossible, even if such an algorithm that may 
solve any of these problems to optimal does not 
exist (Goertzel, 1993), Only an approximate 
solution can be expected, which is not too far from 
the true optimum, Many researchers consider that 
the existence of such algorithm is undecided in the 
sense of the G<ldel theorem, which states that if 
neither the existence of such an algorithm cannot be 
demonstrated, nor can its inexistence. A simple 
approach to solve the TSP is to list all the possible 
paths benveen the cities, then compare all the path 
lengths to find out which one is the sbonest. 
Unfortunately there are too many paths, For n cities 
c;(x;,y;), (i = I, 2. .. , n), and the distances between 
cities obeying the conditions d(c;,Cj) * 0 for every 

'Technical University ofCiuj-Napoca, Faculty of 
Machine Building, Dept of Manufacturing Engineering 
ll-dul Muncii 103- 105, 400641 Cluj-Napoca, Romania 
1Universil)' ofMalta, Faculty of Science. Departmenl of 
Statistics and Operations Research, Msida MSD06, 
Malta 
E-maiJ: mircea.ancau@tcm.utcluj.ro; 
liberato.camilleri@um.edo.mt 

i * j, and d(e;,e;) = 0, (i =I, 2, . .. , n), the problem is 
caJied symmetric if d(e;,Cj) = d(c;,c;), (i = I, 2, ... , 
n), The possible paths, also called tours, increase if 
the number of the c ities increases. In the case of the 
symmetric TSP, for n cities, the possible tour 
numbers N,(n) • (n-1)!/2, So, for 10 cities there are 
N,(JO) = 181,440 different tours, for IS cities N,(15) 
= 43,589,145,600 different tours and so on, When 
the number of the c ities increases, it can easily be 
seen that exhaustive exploration of all possible tours 
becomes impracticable, ,despite the perfonnances of 
actual computers, 

Nevenheless, years of researches in the field of 
optimization techniques as well as tile rap id 
development of the memory amount and the speed 
of the computers, have lead to astonishing solutions 
to these problems. So, in the last 25 years, the 
record for the most complex combinatorial 
optimization problem, solved to optimum, increased 
from 318 cities (Crowder and Padberg, 1980) to 
2390 c ities (Padberg and Rinaldi, 1987) and 7397 
cities (Applegate and Cook, !993), This last result 
required the equivalent of at about 4 years CPU 
time on a SPARC station (Johnson and McGeoch, 
1997), Today, problems of 100 cities are solved in 
seconds or minutes, while problems of JOI}() cities 
or more are solved within hours or days (Padberg 
and Rinaldi, 1991), (GrOtschel and Holland, 1991), 
(Applegate and Cook, 1993). Anyway, the TSP 
remains a very difficult problem to solve exactly. It 
is not only difficult to find out the solution, b ut even 
to know its exact value, the so called Held-Karp 
lower bound. For test instances not very large, there 
is a way to calculate the optimum value exactly, by 
linear programming techniques. for other test 
instances this lower bound may be numerically 
estimated (Johnson and McGeoc!t, 1997), In any 
case, what we may hope in most of tl1e situations is 
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an approximate solution only, called Probably 
Approximately Correct (PAC) solution. 

Most of the researchers state that there are two 
possible approaches for solving combinatorial 
optimization problems: either an optimization 
algorithm in the strict sense of the word, yielding a 
globally optimal solution, or an approximation 
algorithm yielding a very good or possibly optimal 
solution. A good start for solving the TSP might be 
a tour developing method, usually a greedy one, 
which produces a valid solution using a growing 
process. Another way is to begin from a valid tour 
and, using a technique based on local search, to get 
a better solution. Such solving methods are called 
heuristics (the word heuristic is an adjective 
involving thought and investigation as a method of 
problem solving -from Greek heuriskein meaning to 
discover). Concerning the operational principle, the 
heuristic methods for solving \be TSP may be 
generally divided in two classes called tour 
construction heuristics and successive augme.ntatz'on 
heun"stics. 

Within the tour construction heuristics, the 
best known are the Nearest Neighbour, the Greedy, 
the Clarke-Wright and the Christo fides. The Nearest 
Neighbour heuristic is based on a simple rule which 
imposes each time, going next to the nearest 
unvisited location (Rosenkrantz et al. 1977). The 
tow- traverses the cities in the constructed order, 
returning in the fiTSt city after visiting the last one in 
the list. In the case of the Greedy heuristic, the set 
of cities is viewed as a complete graph with cities as 
vertices and the distances between each pair of 
cities as graph edges. 

The tour is the hamiltonian path in the graph 
(Bentley, 1992). The Clarke-Wright heuristic 
(Frieze, 1979) starts with a pseudo-tour in which 
one city serves as a central node, also called hub, 
and all the remaining cities are connected with the 
bub by two edges. This pseudcrtour starts from the 
central node and, after visiting each city, the 
salesman returns to the central node. The rule of the 
tour construction allows to bypass the hub if this 
change does not increase the tour length and also if 
one city does not become adjacent to more than two 
cities. 

The algorithm of the Christofides heuristic 
starts by constructing a minimum spanning tree and 
computing a minimum-length matching on the 
vertices of odd degrees in the tree. Combining these 
two trees what can be obtained is a connected graph 
in which every vertex has even degree (Lawler, 
1985). This graph must contain a cycle that passes 
through each city exactly once. · Experimental 

results, on tour construction heuristics showed on 
random eucl_idian instances an average percent 
excess over the Held-Karp lower bound within 23 + 
25% for the Nearest Neighbour, 14.2 + 19.5% for 
the Greedy, 9.2 + 12.2 for the Clarke-Wright, 9.5 + 
9.9% for the Christofides (Johnson and McGeoch, 
1997). 

The group of successive augmentation 
heuristics includes 2-0pt, 3-0pt as simple tour 
modifications, k-Opt as a generalization of the 
previous, Tabu Search with variants, Simulated 
Annealing with variants, Genetic Algorithms and 
Neural Network with variants. The basic approach 
to these heuristics is the iterative improvement of a 
set of randomly selected feasible solutions. The 
main steps are: 

a) Generation of a pseudcrrandom feasible 
solution S that satisfies the criterion valid 
tQur; 

b) Attempt to fmd an improved feasible 
solution s. by means of some 
transformation of S; 

c) !fan improved solution is found, i.e. Length 
(S,) < Length (S), then replace S by s., 
repeat from step. (b); 

If no improved solution can be found, then S is 
the locally optimum solution. Repeat from step (b) 
until computation time runs out or answers arc 
satisfactory. 

The group of 20pt and 30pt heuristics may be 
viewed as a neighbourhood search process, where 
each tour has an associated neighbourhood of 
adjacent tours. The algorithm removes two or three 
edges, therefore breaking the tour into two or three 
subtours and, after that, reconnects the path in 
another way (Croes, 1958). There is one remark to 
be made here. If we restrict only to 20pt moves 
which remove crossings (i.e. those that delete from 
the tour two edges that intersect at a common 
poin~): 

a) such moves cannot cause the increase of the 
tour length (under the euclidean norm) due 
to the triangle inequality; 

b) such moves may introduce new crossings. 
Although, at mos~ n' moves are sufficient 
to remove all crossings, where n is the 
number of the cities in that instance 
(Johnson and McGeocb, 1997). 

The kOpt moves are a generalization of the 
20pt and 30pt moves. As 30pt moves do, the kOpt 
moves may make the escape from a local optimum 
possible, but the running time is considerably 
slower. 
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fulfilled. The criterion of the iteration number was 
used as a stopping condition. 

Read initial data and build distance matrix; 
while (slOpping condition not satisfied) 
{ 
II The tour ccnstruction as global search procedure 

Generate random pennutation of n cities; 
Setup a partial tour with the first three cities from 

the above permutationj 
Insert cities in the tour, based on the condition of 

minimum tour length incrcasingi 

II Local search procedure 

} 

Improve the tour by shifting 20pt, 30pt and 40pt; 
Check and remove crossing segmentS; 
Calculate the tour length; 
if (actual tour length< previous minimum 

tour length) 
Minimum tour length = Actual tour length; 

Fi,ure I. The main steps performed by the heuristic 
algorithm 

2.1 The tour construction algorithm 

The (x,y) coordinates of the n cities are stored 
in an array of structures, together with an integer 
variable wb.icb takes into account the index of cities 
from the tsp file. In tbe same structure of cities there 
is a variable which can take the value zero or one, 
depending on the fact that the city was visited or 
not. Parallel to tbe array of structures of the cities, 
there is an array of pointers in which strucrure 
elements addresses are stored. To speed up the 
computation, instead of moving structure elements, 
only pointers are moved. 

The frrst step in the construction of the tour 
algorithm a random sequence of integers from I to 
n, is generated as a permutation. In ANSI C the 
rand() function returns a value of type int (a two 
byte quantity on many machines), which must be at 
most 32767. This can be a serious impediment 
especially in the Monte Carlo approach. In 
generating a random instance, the portable random 
numbers generator ran I 0 of Park and Miller (Press 
et al,l997) was used, which has a period bigger than 
I o•. Once the permutation is generated, its sequence 
is assigned to the array of pointers in which the 
addresses of cities structures elements are stored. 

The tour construction procedure starts with a 
subtour made by the ftrst three cities from the 
permutation order. The rest of the cities, in the 
random permutation order, will be inserted one by 
one, in th.is subtour, in a position done by the 
minimum increasing cost criterion. ln this way, step 

by step the subtour extends until the complete tour 
is fonned. 

II the generalion of n random permullztions 
fori • Oton 
p[i] - i; 

fori=Oto n 
{ 
II call the random number generator ran/0: 
rin = random integer number, betWeen i to (n-i); 
exchange p[i) with p(rin]; 

} 
II Assign the order of the pointl!rs ac(;()rding to the 
array p[l} 

which stores the random permutation 
rod = 0 to (n-1) 

pointer of city [i] = the address of city (p(i]J; 
pointer of city (n) = the address of city (p[OJI; 

Figure l. The random permutation algorithm 

2.2 The local sea rch algorithm 

The tour construction procedure described 
above depends on the order in which the cities are 
inserted. If we start again the construction of the 
tour. using another insertion order of the cities the 
result will be different. 

This feature can be exploited as in a Monte 
Carlo procedure. For a large amount of different 
cities insertion orders we may retain the best tour 
variant But this approach is too slow and the tour 
constructed at this first step usually has many points 
of intersection between tour segments. Th.is is not 
an impediment because we can remove the cross 
sections and improve the tour. The 20pt. 30pt and 
40pt moves were preferred as a local search 
approaches to the tour. 

The 20pt approach deletes two segments, thus 
breaking the tour in two paths, and then reconnects 
those paths in a way that minimizes the tour cost 
Any removed crossing leads to a shoner tour, due to 
the triangle inequality. But it should be remarked 
tbat one 20pt move may introduce new crossings 
(see Figure 3). 

· Nevertheless it is known that, at most, n' 
uncrossing 20pt moves are enough to remove all 
crossings (Johnson and McGeoch, 1997) wbere n is 
the number of the cities. 

In a similar form, the 30pt and 40pt moves 
delete three or four segments respectively, from the 
tour, breaking the tour in three or four paths 
respectively, and then reconnect those paths in the 
way that also minimizes the tour cost. 

There are several ways for breaking the tour 
and for reconnection, by 30pt and 40pt moves. 
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rd400 139,896 3.25 
rat575 3,556.944 5.52 

In Table I, 13 test instances and their 
optimality ratios in percent are listed, as well as the 
iteration a t which these ratios were attained. In most 
of these test instances, the results reached exactly or 
almost the optimal value. The results are situated 
much under 1 percent above the optimal value. An 
exemption is the eiliOI problem where, after 
10,650,820 iterations, the result achleved has an 
optimality ratio of 2.06 percent higher than the 
optimal value. The test instances a280, rd400 and 
rat575 have a higher optimality ratio but, as we can 
see, the iteration number was not so high. 

•• 
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Figure 6. History of iterations for kroaJOO, krobJ OO, 

kroc!OO and kroelOO 

All of the run tests presented in Figure 6 and 
Figure 7 were completed according to the heuristic 
algorithm principles presented in Figure 1. 
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Figure 7. History of iterations for rdJOO, eillOJ, 
bler127, t bl 30 and o280 

Consequently at each iteration, the tour 
construction . procedure (i.e. global search} was 
followed by a local optimi2.ation (i.e. local search}. 
To fmd out the progress made by the local 
optimization procedure, several tests were 
completed using the heuristic algorithm with tour 
construction procedure without and with local 
search optimization procedure respectively. Figure 
8 shows the optimization progress in these two 
situations. 

As we can see from Figure 8, local search 
optimi2.ation procedure improves the performance 
of the heuristic algorithm with few percent, 
especially at the beginning of the search process. 

• tOut COIUtnJ(tioft + 
local op1iaCiion 

• tOI.IHOQ~II'U.dion 
"itlt.owlocal 
optin!OatioCI 

Figure 8. History of iterations for krodOO without 
and with loea.l optimization 

There is almost a lways a gap of at least two to 
five percent between these two cases in the flfst one 
thousand iteration and the gap decreases as the 
number of iteration increases to a great extent. This 
is why the local optimization procedure plays ao 
important role in the algorithm performance. 

Table 2.. Optimality ratios for Jai-ge instances from 
TSPLIB 

Test instance Iteration 
Optimality 
ratios o J•/.1 

dsi!OOO 654,641 8.1 5 
. d l655 233,175 12.61 

d2103 3 16,392 15.81 
ul432 1,406,278 8.67 
u2 152 350 787 15.97 

When the number of cities in the test instance 
exceeds one thousaod, the search progress becomes 
quite slow. This is justifiable while the tour 
construction procedure is based on a random 
permutation approach, i.e. Monte Carlo method. As 
the number of the cities becomes higher, the 
number of trials in the random pennutation 
approach must increase to a great extent to cover 
the interval of possible solution uniformly. It means 
that, depending on the type of selected convergence 
criterion of the algorithm, the iteration number or 
the running time have to increase accordingly. 

,To determine the efficiency of the hybrid 
heuristic procedure, for kroaiOO test problem, there 
were performed 50000 iterations. The resultS before 
and after the action of the local search procedure 
were saved at each iteration. In order to determine 
whether the two distributions differ significantly 
there were categorized the minimum path lengths, 
derived from both optimization methods, into nine 
categories. Each category covers a range of 500. It 
is evident from the Table 3, that there are very large 
discrepancies between corresponding counts. 

Let 0; be the frequency of the r• minimum 
path length category corresponding to the 
optimization method not using local search. Let £, 
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designed on the frame of a general optimization 
procedure which act upon two steps, iteratively. In 
the tirst step of the global search, a feasible tour is 
constructed based on insertion approach. In the 
second step the feasible tour found at the tirst step, 
is improved by a local search optimization 
procedure. 

One of the hard problems of the algorithm 
design was not only to generate a random 
permutation, but to avoid the repetition of the same 
permutation sometime, along the iterative steps of 
the search process. This thing is more complicated 
to verify as the number of the cities becomes higher. 
Because there is a strong connection between the 
probability of escape from a local optimum point 
aod the random permutation sequence in which the 
cities are inserted in tour, a main future research 
consideration will be the improvement of the 
procedure which generates the random permutation 
of the cities. The statistical analysis of the kroaiOO 
test problem shows the effectiveness of the local 
search optimization procedure, in the graphical 
representation. 

A key point in the future research will be the 
improvement of the local search procedure. For the 
moment, only kOpt moves were used as a local 
search approach. Now, the results are close to those 
of the similar heuristic techniques from the 
literarure. An intensive search in the neighbourhood · 
of good solutions by making some perturbations, 
similar to the Simulated Annealing or the use of the 
search history to determine the so called backbones 
(Schneider ,2002), (Schneider,2003), might be a 
possible approach in the improvement of the local 
search that will follow. 
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