6,097 research outputs found

    Graph-Based Decoding in the Presence of ISI

    Full text link
    We propose an approximation of maximum-likelihood detection in ISI channels based on linear programming or message passing. We convert the detection problem into a binary decoding problem, which can be easily combined with LDPC decoding. We show that, for a certain class of channels and in the absence of coding, the proposed technique provides the exact ML solution without an exponential complexity in the size of channel memory, while for some other channels, this method has a non-diminishing probability of failure as SNR increases. Some analysis is provided for the error events of the proposed technique under linear programming.Comment: 25 pages, 8 figures, Submitted to IEEE Transactions on Information Theor

    A BP-MF-EP Based Iterative Receiver for Joint Phase Noise Estimation, Equalization and Decoding

    Full text link
    In this work, with combined belief propagation (BP), mean field (MF) and expectation propagation (EP), an iterative receiver is designed for joint phase noise (PN) estimation, equalization and decoding in a coded communication system. The presence of the PN results in a nonlinear observation model. Conventionally, the nonlinear model is directly linearized by using the first-order Taylor approximation, e.g., in the state-of-the-art soft-input extended Kalman smoothing approach (soft-in EKS). In this work, MF is used to handle the factor due to the nonlinear model, and a second-order Taylor approximation is used to achieve Gaussian approximation to the MF messages, which is crucial to the low-complexity implementation of the receiver with BP and EP. It turns out that our approximation is more effective than the direct linearization in the soft-in EKS with similar complexity, leading to significant performance improvement as demonstrated by simulation results.Comment: 5 pages, 3 figures, Resubmitted to IEEE Signal Processing Letter

    Turbo-Equalization Using Partial Gaussian Approximation

    Full text link
    This paper deals with turbo-equalization for coded data transmission over intersymbol interference (ISI) channels. We propose a message-passing algorithm that uses the expectation-propagation rule to convert messages passed from the demodulator-decoder to the equalizer and computes messages returned by the equalizer by using a partial Gaussian approximation (PGA). Results from Monte Carlo simulations show that this approach leads to a significant performance improvement compared to state-of-the-art turbo-equalizers and allows for trading performance with complexity. We exploit the specific structure of the ISI channel model to significantly reduce the complexity of the PGA compared to that considered in the initial paper proposing the method.Comment: 5 pages, 2 figures, submitted to IEEE Signal Processing Letters on 8 March, 201

    Iterative channel equalization, channel decoding and source decoding

    No full text
    The performance of soft source decoding is evaluated over dispersive AWGN channels. By employing source codes having error-correcting capabilities, such as Reversible Variable-Length Codes (RVLCs) and Variable-Length Error-Correcting (VLEC) codes, the softin/soft-out (SISO) source decoder benefits from exchanging information with the MAP equalizer, and effectively eliminates the inter-symbol interference (ISI) after a few iterations. It was also found that the soft source decoder is capable of significantly improving the attainable performance of the turbo receiver provided that channel equalization, channel decoding and source decoding are carried out jointly and iteratively. At SER = 10-4, the performance of this three-component turbo receiver is about 2 dB better in comparison to the benchmark scheme carrying out channel equalization and channel decoding jointly, but source decoding separately. At this SER value, the performance of the proposed scheme is about 1 dB worse than that of the ½-rate convolutional coded non-dispersive AWGN channel.<br/

    Bit error performance of diffuse indoor optical wireless channel pulse position modulation system employing artificial neural networks for channel equalisation

    Get PDF
    The bit-error rate (BER) performance of a pulse position modulation (PPM) scheme for non-line-of-sight indoor optical links employing channel equalisation based on the artificial neural network (ANN) is reported. Channel equalisation is achieved by training a multilayer perceptrons ANN. A comparative study of the unequalised `soft' decision decoding and the `hard' decision decoding along with the neural equalised `soft' decision decoding is presented for different bit resolutions for optical channels with different delay spread. We show that the unequalised `hard' decision decoding performs the worst for all values of normalised delayed spread, becoming impractical beyond a normalised delayed spread of 0.6. However, `soft' decision decoding with/without equalisation displays relatively improved performance for all values of the delay spread. The study shows that for a highly diffuse channel, the signal-to-noise ratio requirement to achieve a BER of 10−5 for the ANN-based equaliser is ~10 dB lower compared with the unequalised `soft' decoding for 16-PPM at a data rate of 155 Mbps. Our results indicate that for all range of delay spread, neural network equalisation is an effective tool of mitigating the inter-symbol interference

    Performance of the EP-MBCJR algorithm in time dispersive MIMO office environments

    Get PDF

    Low Complexity Decoding for Higher Order Punctured Trellis-Coded Modulation Over Intersymbol Interference Channels

    Full text link
    Trellis-coded modulation (TCM) is a power and bandwidth efficient digital transmission scheme which offers very low structural delay of the data stream. Classical TCM uses a signal constellation of twice the cardinality compared to an uncoded transmission with one bit of redundancy per PAM symbol, i.e., application of codes with rates n1n\frac{n-1}{n} when 2n2^{n} denotes the cardinality of the signal constellation. Recently published work allows rate adjustment for TCM by means of puncturing the convolutional code (CC) on which a TCM scheme is based on. In this paper it is shown how punctured TCM-signals transmitted over intersymbol interference (ISI) channels can favorably be decoded. Significant complexity reductions at only minor performance loss can be achieved by means of reduced state sequence estimation.Comment: 4 pages, 5 figures, 3 algorithms, accepted and published at 6th International Symposium on Communications, Control, and Signal Processing (ISCCSP 2014

    Coded Modulation Assisted Radial Basis Function Aided Turbo Equalisation for Dispersive Rayleigh Fading Channels

    No full text
    In this contribution a range of Coded Modulation (CM) assisted Radial Basis Function (RBF) based Turbo Equalisation (TEQ) schemes are investigated when communicating over dispersive Rayleigh fading channels. Specifically, 16QAM based Trellis Coded Modulation (TCM), Turbo TCM (TTCM), Bit-Interleaved Coded Modulation (BICM) and iteratively decoded BICM (BICM-ID) are evaluated in the context of an RBF based TEQ scheme and a reduced-complexity RBF based In-phase/Quadrature-phase (I/Q) TEQ scheme. The Least Mean Square (LMS) algorithm was employed for channel estimation, where the initial estimation step-size used was 0.05, which was reduced to 0.01 for the second and the subsequent TEQ iterations. The achievable coding gain of the various CM schemes was significantly increased, when employing the proposed RBF-TEQ or RBF-I/Q-TEQ rather than the conventional non-iterative Decision Feedback Equaliser - (DFE). Explicitly, the reduced-complexity RBF-I/Q-TEQ-CM achieved a similar performance to the full-complexity RBF-TEQ-CM, while attaining a significant complexity reduction. The best overall performer was the RBF-I/Q-TEQ-TTCM scheme, requiring only 1.88~dB higher SNR at BER=10-5, than the identical throughput 3~BPS uncoded 8PSK scheme communicating over an AWGN channel. The coding gain of the scheme was 16.78-dB
    corecore