3,994 research outputs found

    Cycle-accurate evaluation of reconfigurable photonic networks-on-chip

    Get PDF
    There is little doubt that the most important limiting factors of the performance of next-generation Chip Multiprocessors (CMPs) will be the power efficiency and the available communication speed between cores. Photonic Networks-on-Chip (NoCs) have been suggested as a viable route to relieve the off- and on-chip interconnection bottleneck. Low-loss integrated optical waveguides can transport very high-speed data signals over longer distances as compared to on-chip electrical signaling. In addition, with the development of silicon microrings, photonic switches can be integrated to route signals in a data-transparent way. Although several photonic NoC proposals exist, their use is often limited to the communication of large data messages due to a relatively long set-up time of the photonic channels. In this work, we evaluate a reconfigurable photonic NoC in which the topology is adapted automatically (on a microsecond scale) to the evolving traffic situation by use of silicon microrings. To evaluate this system's performance, the proposed architecture has been implemented in a detailed full-system cycle-accurate simulator which is capable of generating realistic workloads and traffic patterns. In addition, a model was developed to estimate the power consumption of the full interconnection network which was compared with other photonic and electrical NoC solutions. We find that our proposed network architecture significantly lowers the average memory access latency (35% reduction) while only generating a modest increase in power consumption (20%), compared to a conventional concentrated mesh electrical signaling approach. When comparing our solution to high-speed circuit-switched photonic NoCs, long photonic channel set-up times can be tolerated which makes our approach directly applicable to current shared-memory CMPs

    Design and Implementation of Benes/Clos On-Chip Interconnection Networks

    Full text link
    Networks-on-Chip (NoCs) have emerged as the key on-chip communication architecture for multiprocessor systems-on-chip and chip multiprocessors. Single-hop non-blocking networks have the advantage of providing uniform latency and throughput, which is important for cachecoherent NoC systems. Existing work shows that Benes networks have much lower transistor count and smaller circuit area but longer delay than crossbars. To reduce the delay, we propose to design the Clos network built with larger size switches. Using less than half number of stages than the Benes network, the Clos network with 4x4 switches can significantly reduce the delay. This dissertation focuses on designing high performance Benes/Clos on-chip interconnection networks and implementing the switch setting circuits for these networks. The major contributions are summarized below: The circuit designs of both Benes and Clos networks in different sizes are conducted considering two types of implementation of the configurable switch: with NMOS transistors only and full transmission gates (TGs). The layout and simulation results under 45nm technology show that TG-based Benes networks have much better delay and power performance than their NMOS-based counterparts, though more transistor resources are needed in TG-based designs. Clos networks achieve average 60% lower delay than Benes networks with even smaller area and power consumption. The Lee’s switch setting algorithm is fully implemented in RTL and synthesized. We have refined the algorithm in data structure and initialization/updating of relation values to make it suitable for hardware implementation. The simulation and synthesis results of the switching setting circuits for 4x4 to 64x64 Benes networks under 65nm technology confirm that the trend of delay and area results of the circuit is consistent with that of the Lee’s algorithm. To the best of our knowledge, this is the first complete hardware implementation of the parallel switch setting algorithm which can handle all types of permutations including partial ones. The results in this dissertation confirm that the Benes/Clos networks are promising solution to implement on-chip interconnection network

    A Switch Architecture for Real-Time Multimedia Communications

    Get PDF
    In this paper we present a switch that can be used to transfer multimedia type of trafJic. The switch provides a guaranteed throughput and a bounded latency. We focus on the design of a prototype Switching Element using the new technology opportunities being offered today. The architecture meets the multimedia requirements but still has a low complexity and needs a minimum amount of hardware. A main item of this paper will be the background of the architectural design decisions made. These include the interconnection topology, buffer organization, routing and scheduling. The implementation of the switching fabric with FPGAs, allows us to experiment with switching mode, routing strategy and scheduling policy in a multimedia environment. The witching elements are interconnected in a Kautz topology. Kautz graphs have interesting properties such as: a small diametec the degree is independent of the network size, the network is fault-tolerant and has a simple routing algorithm

    Optical interconnection networks based on microring resonators

    Get PDF
    Optical microring resonators can be integrated on a chip to perform switching operations directly in the optical domain. Thus they become a building block to create switching elements in on-chip optical interconnection networks, which promise to overcome some of the limitations of current electronic networks. However, the peculiar asymmetric power losses of microring resonators impose new constraints on the design and control of on-chip optical networks. In this work, we study the design of multistage interconnection networks optimized for a particular metric that we name the degradation index, which characterizes the asymmetric behavior of microrings. We also propose a routing control algorithm to maximize the overall throughput, considering the maximum allowed degradation index as a constrain

    An analytical performance model for the Spidergon NoC

    Get PDF
    Networks on chip (NoC) emerged as a promising alternative to bus-based interconnect networks to handle the increasing communication requirements of the large systems on chip. Employing an appropriate topology for a NoC is of high importance mainly because it typically trade-offs between cross-cutting concerns such as performance and cost. The spidergon topology is a novel architecture which is proposed recently for NoC domain. The objective of the spidergon NoC has been addressing the need for a fixed and optimized topology to realize cost effective multi-processor SoC (MPSoC) development [7]. In this paper we analyze the traffic behavior in the spidergon scheme and present an analytical evaluation of the average message latency in the architecture. We prove the validity of the analysis by comparing the model against the results produced by a discreteevent simulator

    TROUTE : a reconfigurability-aware FPGA router

    Get PDF
    • 

    corecore