145 research outputs found

    On Causal and Anticausal Learning

    Get PDF
    We consider the problem of function estimation in the case where an underlying causal model can be inferred. This has implications for popular scenarios such as covariate shift, concept drift, transfer learning and semi-supervised learning. We argue that causal knowledge may facilitate some approaches for a given problem, and rule out others. In particular, we formulate a hypothesis for when semi-supervised learning can help, and corroborate it with empirical results.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012). arXiv admin note: substantial text overlap with arXiv:1112.273

    Towards a Learning Theory of Cause-Effect Inference

    Full text link
    We pose causal inference as the problem of learning to classify probability distributions. In particular, we assume access to a collection {(Si,li)}i=1n\{(S_i,l_i)\}_{i=1}^n, where each SiS_i is a sample drawn from the probability distribution of Xi×YiX_i \times Y_i, and lil_i is a binary label indicating whether "XiYiX_i \to Y_i" or "XiYiX_i \leftarrow Y_i". Given these data, we build a causal inference rule in two steps. First, we featurize each SiS_i using the kernel mean embedding associated with some characteristic kernel. Second, we train a binary classifier on such embeddings to distinguish between causal directions. We present generalization bounds showing the statistical consistency and learning rates of the proposed approach, and provide a simple implementation that achieves state-of-the-art cause-effect inference. Furthermore, we extend our ideas to infer causal relationships between more than two variables

    Justifying Information-Geometric Causal Inference

    Full text link
    Information Geometric Causal Inference (IGCI) is a new approach to distinguish between cause and effect for two variables. It is based on an independence assumption between input distribution and causal mechanism that can be phrased in terms of orthogonality in information space. We describe two intuitive reinterpretations of this approach that makes IGCI more accessible to a broader audience. Moreover, we show that the described independence is related to the hypothesis that unsupervised learning and semi-supervised learning only works for predicting the cause from the effect and not vice versa.Comment: 3 Figure

    Semi-Supervised Learning, Causality and the Conditional Cluster Assumption

    Full text link
    While the success of semi-supervised learning (SSL) is still not fully understood, Sch\"olkopf et al. (2012) have established a link to the principle of independent causal mechanisms. They conclude that SSL should be impossible when predicting a target variable from its causes, but possible when predicting it from its effects. Since both these cases are somewhat restrictive, we extend their work by considering classification using cause and effect features at the same time, such as predicting disease from both risk factors and symptoms. While standard SSL exploits information contained in the marginal distribution of all inputs (to improve the estimate of the conditional distribution of the target given inputs), we argue that in our more general setting we should use information in the conditional distribution of effect features given causal features. We explore how this insight generalises the previous understanding, and how it relates to and can be exploited algorithmically for SSL.Comment: 36th Conference on Uncertainty in Artificial Intelligence (2020) (Previously presented at the NeurIPS 2019 workshop "Do the right thing": machine learning and causal inference for improved decision making, Vancouver, Canada.

    Learning Independent Causal Mechanisms

    Full text link
    Statistical learning relies upon data sampled from a distribution, and we usually do not care what actually generated it in the first place. From the point of view of causal modeling, the structure of each distribution is induced by physical mechanisms that give rise to dependences between observables. Mechanisms, however, can be meaningful autonomous modules of generative models that make sense beyond a particular entailed data distribution, lending themselves to transfer between problems. We develop an algorithm to recover a set of independent (inverse) mechanisms from a set of transformed data points. The approach is unsupervised and based on a set of experts that compete for data generated by the mechanisms, driving specialization. We analyze the proposed method in a series of experiments on image data. Each expert learns to map a subset of the transformed data back to a reference distribution. The learned mechanisms generalize to novel domains. We discuss implications for transfer learning and links to recent trends in generative modeling.Comment: ICML 201

    Causal Inference by Stochastic Complexity

    Full text link
    The algorithmic Markov condition states that the most likely causal direction between two random variables X and Y can be identified as that direction with the lowest Kolmogorov complexity. Due to the halting problem, however, this notion is not computable. We hence propose to do causal inference by stochastic complexity. That is, we propose to approximate Kolmogorov complexity via the Minimum Description Length (MDL) principle, using a score that is mini-max optimal with regard to the model class under consideration. This means that even in an adversarial setting, such as when the true distribution is not in this class, we still obtain the optimal encoding for the data relative to the class. We instantiate this framework, which we call CISC, for pairs of univariate discrete variables, using the class of multinomial distributions. Experiments show that CISC is highly accurate on synthetic, benchmark, as well as real-world data, outperforming the state of the art by a margin, and scales extremely well with regard to sample and domain sizes

    Telling cause from effect in deterministic linear dynamical systems

    Full text link
    Inferring a cause from its effect using observed time series data is a major challenge in natural and social sciences. Assuming the effect is generated by the cause trough a linear system, we propose a new approach based on the hypothesis that nature chooses the "cause" and the "mechanism that generates the effect from the cause" independent of each other. We therefore postulate that the power spectrum of the time series being the cause is uncorrelated with the square of the transfer function of the linear filter generating the effect. While most causal discovery methods for time series mainly rely on the noise, our method relies on asymmetries of the power spectral density properties that can be exploited even in the context of deterministic systems. We describe mathematical assumptions in a deterministic model under which the causal direction is identifiable with this approach. We also discuss the method's performance under the additive noise model and its relationship to Granger causality. Experiments show encouraging results on synthetic as well as real-world data. Overall, this suggests that the postulate of Independence of Cause and Mechanism is a promising principle for causal inference on empirical time series.Comment: This article is under review for a peer-reviewed conferenc
    corecore