100,016 research outputs found

    Software engineering and middleware: a roadmap (Invited talk)

    Get PDF
    The construction of a large class of distributed systems can be simplified by leveraging middleware, which is layered between network operating systems and application components. Middleware resolves heterogeneity and facilitates communication and coordination of distributed components. Existing middleware products enable software engineers to build systems that are distributed across a local-area network. State-of-the-art middleware research aims to push this boundary towards Internet-scale distribution, adaptive and reconfigurable middleware and middleware for dependable and wireless systems. The challenge for software engineering research is to devise notations, techniques, methods and tools for distributed system construction that systematically build and exploit the capabilities that middleware deliver

    FRIENDS - A flexible architecture for implementing fault tolerant and secure distributed applications

    Get PDF
    FRIENDS is a software-based architecture for implementing fault-tolerant and, to some extent, secure applications. This architecture is composed of sub-systems and libraries of metaobjects. Transparency and separation of concerns is provided not only to the application programmer but also to the programmers implementing metaobjects for fault tolerance, secure communication and distribution. Common services required for implementing metaobjects are provided by the sub-systems. Metaobjects are implemented using object-oriented techniques and can be reused and customised according to the application needs, the operational environment and its related fault assumptions. Flexibility is increased by a recursive use of metaobjects. Examples and experiments are also described

    Energy Transparency for Deeply Embedded Programs

    Get PDF
    Energy transparency is a concept that makes a program's energy consumption visible, from hardware up to software, through the different system layers. Such transparency can enable energy optimizations at each layer and between layers, and help both programmers and operating systems make energy-aware decisions. In this paper, we focus on deeply embedded devices, typically used for Internet of Things (IoT) applications, and demonstrate how to enable energy transparency through existing Static Resource Analysis (SRA) techniques and a new target-agnostic profiling technique, without hardware energy measurements. Our novel mapping technique enables software energy consumption estimations at a higher level than the Instruction Set Architecture (ISA), namely the LLVM Intermediate Representation (IR) level, and therefore introduces energy transparency directly to the LLVM optimizer. We apply our energy estimation techniques to a comprehensive set of benchmarks, including single- and also multi-threaded embedded programs from two commonly used concurrency patterns, task farms and pipelines. Using SRA, our LLVM IR results demonstrate a high accuracy with a deviation in the range of 1% from the ISA SRA. Our profiling technique captures the actual energy consumption at the LLVM IR level with an average error of 3%.Comment: 33 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:1510.0709

    Middleware Design Framework for Mobile Computing

    Get PDF
    Mobile computing is one of the recent growing fields in the area of wireless networking. The recent standardization efforts accomplished in Web services, with their XML-based formats for registration/discovery, service description, and service access, respectively UDDI, WSDL, and SOAP, certainly represent an interesting first step towards open service composition, which MA supports for mobile computing are expected to integrate within their frameworks soon. A middle-ware that can work even if the network parameters are changed can be a better solution for successful mobile computing. A middle-ware is proposed for handling the entire existing problem in distributed environment. Middleware is about integration and interoperability of applications and services running on heterogeneous computing and communication devices. The services it provides - including identification, authentication, authorization, soft-switching, certification and security - are used in a vast range of global appliances and systems, from smart cards and wireless devices to mobile services and e-Commerce

    Implementing fault tolerant applications using reflective object-oriented programming

    Get PDF
    Abstract: Shows how reflection and object-oriented programming can be used to ease the implementation of classical fault tolerance mechanisms in distributed applications. When the underlying runtime system does not provide fault tolerance transparently, classical approaches to implementing fault tolerance mechanisms often imply mixing functional programming with non-functional programming (e.g. error processing mechanisms). The use of reflection improves the transparency of fault tolerance mechanisms to the programmer and more generally provides a clearer separation between functional and non-functional programming. The implementations of some classical replication techniques using a reflective approach are presented in detail and illustrated by several examples, which have been prototyped on a network of Unix workstations. Lessons learnt from our experiments are drawn and future work is discussed

    Autonomic State Management for Optimistic Simulation Platforms

    Get PDF
    We present the design and implementation of an autonomic state manager (ASM) tailored for integration within optimistic parallel discrete event simulation (PDES) environments based on the C programming language and the executable and linkable format (ELF), and developed for execution on x8664 architectures. With ASM, the state of any logical process (LP), namely the individual (concurrent) simulation unit being part of the simulation model, is allowed to be scattered on dynamically allocated memory chunks managed via standard API (e.g., malloc/free). Also, the application programmer is not required to provide any serialization/deserialization module in order to take a checkpoint of the LP state, or to restore it in case a causality error occurs during the optimistic run, or to provide indications on which portions of the state are updated by event processing, so to allow incremental checkpointing. All these tasks are handled by ASM in a fully transparent manner via (A) runtime identification (with chunk-level granularity) of the memory map associated with the LP state, and (B) runtime tracking of the memory updates occurring within chunks belonging to the dynamic memory map. The co-existence of the incremental and non-incremental log/restore modes is achieved via dual versions of the same application code, transparently generated by ASM via compile/link time facilities. Also, the dynamic selection of the best suited log/restore mode is actuated by ASM on the basis of an innovative modeling/optimization approach which takes into account stability of each operating mode with respect to variations of the model/environmental execution parameters

    Thin-film quantum dot photodiode for monolithic infrared image sensors

    Get PDF
    Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however prevented by high manufacturing cost and low resolution related to the need of using image sensors based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive, small-scale III-V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in an inverted architecture shows dark current of 10(-6) A/cm(2) at 2 V reverse bias and EQE above 20% at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors
    • 

    corecore