629 research outputs found

    On algorithmic rate-coded AER generation

    Get PDF
    This paper addresses the problem of converting a conventional video stream based on sequences of frames into the spike event-based representation known as the address-event-representation (AER). In this paper we concentrate on rate-coded AER. The problem is addressed as an algorithmic problem, in which different methods are proposed, implemented and tested through software algorithms. The proposed algorithms are comparatively evaluated according to different criteria. Emphasis is put on the potential of such algorithms for a) doing the frame-based to event-based representation in real time, and b) that the resulting event streams ressemble as much as possible those generated naturally by rate-coded address-event VLSI chips, such as silicon AER retinae. It is found that simple and straightforward algorithms tend to have high potential for real time but produce event distributions that differ considerably from those obtained in AER VLSI chips. On the other hand, sophisticated algorithms that yield better event distributions are not efficient for real time operations. The methods based on linear-feedback-shift-register (LFSR) pseudorandom number generation is a good compromise, which is feasible for real time and yield reasonably well distributed events in time. Our software experiments, on a 1.6-GHz Pentium IV, show that at 50% AER bus load the proposed algorithms require between 0.011 and 1.14 ms per 8 bit-pixel per frame. One of the proposed LFSR methods is implemented in real time hardware using a prototyping board that includes a VirtexE 300 FPGA. The demonstration hardware is capable of transforming frames of 64 times; 64 pixels of 8-bit depth at a frame rate of 25 frames per second, producing spike events at a peak rate of 107 events per second.European Union IST-2001-34124Gobierno de España TIC-2000-0406-P4, TIC-2003-08164-C03-0

    AER-based robotic closed-loop control system

    Get PDF
    Address-Event-Representation (AER) is an asynchronous protocol for transferring the information of spiking neuro-inspired systems. Actually AER systems are able to see, to ear, to process information, and to learn. Regarding to the actuation step, the AER has been used for implementing Central Pattern Generator algorithms, but not for controlling the actuators in a closed-loop spike-based way. In this paper we analyze an AER based model for a real-time neuro-inspired closed-loop control system. We demonstrate it into a differential control system for a two-wheel vehicle using feedback AER information. PFM modulation has been used to power the DC motors of the vehicle and translation into AER of encoder information is also presented for the close-loop. A codesign platform (called AER-Robot), based into a Xilinx Spartan 3 FPGA and an 8051 USB microcontroller, with power stages for four DC motors has been used for the demonstrator.Junta de Andalucía P06-TIC-01417Ministerio de Educación y Ciencia TEC2006-11730-C03-0

    An AER-Based Actuator Interface for Controlling an Anthropomorphic Robotic Hand

    Get PDF
    Bio-Inspired and Neuro-Inspired systems or circuits are a relatively novel approaches to solve real problems by mimicking the biology in its efficient solutions. Robotic also tries to mimic the biology and more particularly the human body structure and efficiency of the muscles, bones, articulations, etc. Address-Event-Representation (AER) is a communication protocol for transferring asynchronous events between VLSI chips, originally developed for neuro-inspired processing systems (for example, image processing). Such systems may consist of a complicated hierarchical structure with many chips that transmit data among them in real time, while performing some processing (for example, convolutions). The information transmitted is a sequence of spikes coded using high speed digital buses. These multi-layer and multi-chip AER systems perform actually not only image processing, but also audio processing, filtering, learning, locomotion, etc. This paper present an AER interface for controlling an anthropomorphic robotic hand with a neuro-inspired system.Unión Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y Tecnología TIC-2003-08164-C03-0

    AER Auditory Filtering and CPG for Robot Control

    Get PDF
    Address-Event-Representation (AER) is a communication protocol for transferring asynchronous events between VLSI chips, originally developed for bio-inspired processing systems (for example, image processing). The event information in an AER system is transferred using a highspeed digital parallel bus. This paper presents an experiment using AER for sensing, processing and finally actuating a Robot. The AER output of a silicon cochlea is processed by an AER filter implemented on a FPGA to produce rhythmic walking in a humanoid robot (Redbot). We have implemented both the AER rhythm detector and the Central Pattern Generator (CPG) on a Spartan II FPGA which is part of a USB-AER platform developed by some of the authors.Commission of the European Communities IST-2001-34124 (CAVIAR)Comisión Interministerial de Ciencia y Tecnología TIC-2003-08164-C03-0

    From Vision Sensor to Actuators, Spike Based Robot Control through Address-Event-Representation

    Get PDF
    One field of the neuroscience is the neuroinformatic whose aim is to develop auto-reconfigurable systems that mimic the human body and brain. In this paper we present a neuro-inspired spike based mobile robot. From commercial cheap vision sensors converted into spike information, through spike filtering for object recognition, to spike based motor control models. A two wheel mobile robot powered by DC motors can be autonomously controlled to follow a line drown in the floor. This spike system has been developed around the well-known Address-Event-Representation mechanism to communicate the different neuro-inspired layers of the system. RTC lab has developed all the components presented in this work, from the vision sensor, to the robot platform and the FPGA based platforms for AER processing.Ministerio de Ciencia e Innovación TEC2006-11730-C03-02Junta de Andalucía P06-TIC-0141

    Visual Spike-based Convolution Processing with a Cellular Automata Architecture

    Get PDF
    this paper presents a first approach for implementations which fuse the Address-Event-Representation (AER) processing with the Cellular Automata using FPGA and AER-tools. This new strategy applies spike-based convolution filters inspired by Cellular Automata for AER vision processing. Spike-based systems are neuro-inspired circuits implementations traditionally used for sensory systems or sensor signal processing. AER is a neuromorphic communication protocol for transferring asynchronous events between VLSI spike-based chips. These neuro-inspired implementations allow developing complex, multilayer, multichip neuromorphic systems and have been used to design sensor chips, such as retinas and cochlea, processing chips, e.g. filters, and learning chips. Furthermore, Cellular Automata is a bio-inspired processing model for problem solving. This approach divides the processing synchronous cells which change their states at the same time in order to get the solution.Ministerio de Educación y Ciencia TEC2006-11730-C03-02Ministerio de Ciencia e Innovación TEC2009-10639-C04-02Junta de Andalucía P06-TIC-0141

    AER tools for Communications and Debugging

    Get PDF
    Address-event-representation (AER) is a communications protocol for transferring spikes between bio-inspired chips. Such systems may consist of a hierarchical structure with several chips that transmit spikes among them in real time, while performing some processing. To develop and test AER based systems it is convenient to have a set of instruments that would allow to: generate AER streams, monitor the output produced by neural chips and modify the spike stream produced by an emitting chip to adapt it to the requirements of the receiving elements. In this paper we present a set of tools that implement these functions developed in the CAVIAR EU projectUnión Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y Tecnología TIC-2003-08164-C03-0

    Spike Processing on an Embedded Multi-task Computer: Image Reconstruction

    Get PDF
    There is an emerging philosophy, called Neuro-informatics, contained in the Artificial Intelligence field, that aims to emulate how living beings do tasks such as taking a decision based on the interpretation of an image by emulating spiking neurons into VLSI designs and, therefore, trying to re-create the human brain at its highest level. Address-Event-Representation (AER) is a communication protocol that has embedded part of the processing. It is intended to transfer spikes between bioinspired chips. An AER based system may consist of a hierarchical structure with several chips that transmit spikes among them in real-time, while performing some processing. There are several AER tools to help to develop and test AER based systems. These tools require the use of a computer to allow the higher level processing of the event information, reaching very high bandwidth at the AER communication level. We propose the use of an embedded platform based on a multi-task operating system to allow both, the AER communication and processing without the requirement of either a laptop or a computer. In this paper, we present and study the performance of a new philosophy of a frame-grabber AER tool based on a multi-task environment. This embedded platform is based on the Intel XScale processor which is governed by an embedded GNU/Linux system. We have connected and programmed it for processing Address-Event information from a spiking generator.Ministerio de Educación y Ciencia TEC2006-11730-C03-0

    Embedding Multi-Task Address-Event- Representation Computation

    Get PDF
    Address-Event-Representation, AER, is a communication protocol that is intended to transfer neuronal spikes between bioinspired chips. There are several AER tools to help to develop and test AER based systems, which may consist of a hierarchical structure with several chips that transmit spikes among them in real-time, while performing some processing. Although these tools reach very high bandwidth at the AER communication level, they require the use of a personal computer to allow the higher level processing of the event information. We propose the use of an embedded platform based on a multi-task operating system to allow both, the AER communication and processing without the requirement of either a laptop or a computer. In this paper, we present and study the performance of an embedded multi-task AER tool, connecting and programming it for processing Address-Event information from a spiking generator.Ministerio de Ciencia e Innovación TEC2006-11730-C03-0

    On the AER Convolution Processors for FPGA

    Get PDF
    Image convolution operations in digital computer systems are usually very expensive operations in terms of resource consumption (processor resources and processing time) for an efficient Real-Time application. In these scenarios the visual information is divided into frames and each one has to be completely processed before the next frame arrives in order to warranty the real-time. A spike-based philosophy for computing convolutions based on the neuro-inspired Address-Event- Representation (AER) is achieving high performances. In this paper we present two FPGA implementations of AER-based convolution processors for relatively small Xilinx FPGAs (Spartan-II 200 and Spartan-3 400), which process 64x64 images with 11x11 convolution kernels. The maximum equivalent operation rate that can be reached is 163.51 MOPS for 11x11 kernels, in a Xilinx Spartan 3 400 FPGA with a 50MHz clock. Formulations, hardware architecture, operation examples and performance comparison with frame-based convolution processors are presented and discussed.Ministerio de Ciencia e Innovación TEC2006-11730-C03-02Ministerio de Ciencia e Innovación TEC2009-10639-C04-02Junta de Andalucía P06-TIC-0141
    corecore