746 research outputs found

    On Gaps Between Primitive Roots in the Hamming Metric

    Full text link
    We consider a modification of the classical number theoretic question about the gaps between consecutive primitive roots modulo a prime pp, which by the well-known result of Burgess are known to be at most p1/4+o(1)p^{1/4+o(1)}. Here we measure the distance in the Hamming metric and show that if pp is a sufficiently large rr-bit prime, then for any integer n[1,p]n \in [1,p] one can obtain a primitive root modulo pp by changing at most 0.11002786...r0.11002786...r binary digits of nn. This is stronger than what can be deduced from the Burgess result. Experimentally, the number of necessary bit changes is very small. We also show that each Hilbert cube contained in the complement of the primitive roots modulo pp has dimension at most O(p1/5+ϵ)O(p^{1/5+\epsilon}), improving on previous results of this kind.Comment: 16 pages; to appear in Q.J. Mat

    Log-correlated Gaussian fields: an overview

    Get PDF
    We survey the properties of the log-correlated Gaussian field (LGF), which is a centered Gaussian random distribution (generalized function) hh on Rd\mathbb R^d, defined up to a global additive constant. Its law is determined by the covariance formula Cov[(h,ϕ1),(h,ϕ2)]=Rd×Rdlogyzϕ1(y)ϕ2(z)dydz\mathrm{Cov}\bigl[ (h, \phi_1), (h, \phi_2) \bigr] = \int_{\mathbb R^d \times \mathbb R^d} -\log|y-z| \phi_1(y) \phi_2(z)dydz which holds for mean-zero test functions ϕ1,ϕ2\phi_1, \phi_2. The LGF belongs to the larger family of fractional Gaussian fields obtained by applying fractional powers of the Laplacian to a white noise WW on Rd\mathbb R^d. It takes the form h=(Δ)d/4Wh = (-\Delta)^{-d/4} W. By comparison, the Gaussian free field (GFF) takes the form (Δ)1/2W(-\Delta)^{-1/2} W in any dimension. The LGFs with d{2,1}d \in \{2,1\} coincide with the 2D GFF and its restriction to a line. These objects arise in the study of conformal field theory and SLE, random surfaces, random matrices, Liouville quantum gravity, and (when d=1d=1) finance. Higher dimensional LGFs appear in models of turbulence and early-universe cosmology. LGFs are closely related to cascade models and Gaussian branching random walks. We review LGF approximation schemes, restriction properties, Markov properties, conformal symmetries, and multiplicative chaos applications.Comment: 24 pages, 2 figure

    Entropies from coarse-graining: convex polytopes vs. ellipsoids

    Full text link
    We examine the Boltzmann/Gibbs/Shannon SBGS\mathcal{S}_{BGS} and the non-additive Havrda-Charv\'{a}t / Dar\'{o}czy/Cressie-Read/Tsallis \ Sq\mathcal{S}_q \ and the Kaniadakis κ\kappa-entropy \ Sκ\mathcal{S}_\kappa \ from the viewpoint of coarse-graining, symplectic capacities and convexity. We argue that the functional form of such entropies can be ascribed to a discordance in phase-space coarse-graining between two generally different approaches: the Euclidean/Riemannian metric one that reflects independence and picks cubes as the fundamental cells and the symplectic/canonical one that picks spheres/ellipsoids for this role. Our discussion is motivated by and confined to the behaviour of Hamiltonian systems of many degrees of freedom. We see that Dvoretzky's theorem provides asymptotic estimates for the minimal dimension beyond which these two approaches are close to each other. We state and speculate about the role that dualities may play in this viewpoint.Comment: 63 pages. No figures. Standard LaTe

    Squaring the magic squares of order 4

    Get PDF
    In this paper, we present the problem of counting magic squares and we focus on the case of multiplicative magic squares of order 4. We give the exact number of normal multiplicative magic squares of order 4 with an original and complete proof, pointing out the role of the action of the symmetric group. Moreover, we provide a new representation for magic squares of order 4. Such representation allows the construction of magic squares in a very simple way, using essentially only five particular 4X4 matrices
    corecore