319 research outputs found

    Narain transform for spectral deformations of random matrix models

    Get PDF
    We start from applying the general idea of spectral projection (suggested by Olshanski and Borodin and advocated by Tao) to the complex Wishart model. Combining the ideas of spectral projection with the insights from quantum mechanics, we derive in an effortless way all spectral properties of the complex Wishart model: first, the Marchenko-Pastur distribution interpreted as a Bohr-Sommerfeld quantization condition for the hydrogen atom; second, hard (Bessel), soft (Airy) and bulk (sine) microscopic kernels from properly rescaled radial Schrödinger equation for the hydrogen atom. Then, generalizing the ideas based on Schrödinger equation to the case when Hamiltonian is non-Hermitian, we propose an analogous construction for spectral projections of universal kernels for bi-orthogonal ensembles. In particular, we demonstrate that the Narain transform is a natural extension of the Hankel transform for the products of Wishart matrices, yielding an explicit form of the universal kernel at the hard edge. We also show how the change of variables of the rescaled kernel allows us to make the link to the universal kernel of the Muttalib-Borodin ensemble. The proposed construction offers a simple alternative to standard methods of derivation of microscopic kernels. Finally, we speculate, that a suitable extension of the Bochner theorem for Sturm-Liouville operators may provide an additional insight into the classification of microscopic universality classes in random matrix theory

    From Random Matrices to Stochastic Operators

    Full text link
    We propose that classical random matrix models are properly viewed as finite difference schemes for stochastic differential operators. Three particular stochastic operators commonly arise, each associated with a familiar class of local eigenvalue behavior. The stochastic Airy operator displays soft edge behavior, associated with the Airy kernel. The stochastic Bessel operator displays hard edge behavior, associated with the Bessel kernel. The article concludes with suggestions for a stochastic sine operator, which would display bulk behavior, associated with the sine kernel.Comment: 41 pages, 5 figures. Submitted to Journal of Statistical Physics. Changes in this revision: recomputed Monte Carlo simulations, added reference [19], fit into margins, performed minor editin

    A static memory sparse spectral method for time-fractional PDEs in arbitrary dimensions

    Full text link
    We introduce a method which provides accurate numerical solutions to fractional-in-time partial differential equations posed on [0,T]×Ω[0,T] \times \Omega with Ω⊂Rd\Omega \subset \mathbb{R}^d without the excessive memory requirements associated with the nonlocal fractional derivative operator operator. Our approach combines recent advances in the development and utilization of multivariate sparse spectral methods as well as fast methods for the computation of Gauss quadrature nodes with recursive non-classical methods for the Caputo fractional derivative of general fractional order α>0\alpha > 0. An attractive feature of the method is that it has minimal theoretical overhead when using it on any domain Ω\Omega on which an orthogonal polynomial basis is already available. We discuss the memory requirements of the method, present several numerical experiments demonstrating the method's performance in solving time-fractional PDEs on intervals, triangles and disks and derive error bounds which suggest sensible convergence strategies. As an important model problem for this approach we consider a type of wave equation with time-fractional dampening related to acoustic waves in viscoelastic media with applications in the physics of medical ultrasound and outline future research steps required to use such methods for the reverse problem of image reconstruction from sensor data.Comment: 28 pages, 13 figure

    Option Pricing with Orthogonal Polynomial Expansions

    Full text link
    We derive analytic series representations for European option prices in polynomial stochastic volatility models. This includes the Jacobi, Heston, Stein-Stein, and Hull-White models, for which we provide numerical case studies. We find that our polynomial option price series expansion performs as efficiently and accurately as the Fourier transform based method in the nested affine cases. We also derive and numerically validate series representations for option Greeks. We depict an extension of our approach to exotic options whose payoffs depend on a finite number of prices.Comment: forthcoming in Mathematical Finance, 38 pages, 3 tables, 7 figure

    A selected survey of umbral calculus

    Get PDF
    We survey the mathematical literature on umbral calculus (otherwise known as the calculus of finite differences) from its roots in the 19th century (and earlier) as a set of "magic rules" for lowering and raising indices, through its rebirth in the 1970’s as Rota’s school set it on a firm logical foundation using operator methods, to the current state of the art with numerous generalizations and applications. The survey itself is complemented by a fairly complete bibliography (over 500 references) which we expect to update regularly
    • …
    corecore