1,743 research outputs found

    Limit distributions for the problem of collecting pairs

    Full text link
    Let Nn={1,2,...,n}N_n=\{1,2,...,n\}. Elements are drawn from the set NnN_n with replacement, assuming that each element has probability 1/n1/n of being drawn. We determine the limiting distributions for the waiting time until the given portion of pairs jjjj, j∈Nnj\in N_n, is sampled. Exact distributions of some related random variables and their characteristics are also obtained.Comment: Published in at http://dx.doi.org/10.3150/07-BEJ114 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    New results on a generalized coupon collector problem using Markov chains

    Get PDF
    We study in this paper a generalized coupon collector problem, which consists in determining the distribution and the moments of the time needed to collect a given number of distinct coupons that are drawn from a set of coupons with an arbitrary probability distribution. We suppose that a special coupon called the null coupon can be drawn but never belongs to any collection. In this context, we obtain expressions of the distribution and the moments of this time. We also prove that the almost-uniform distribution, for which all the non-null coupons have the same drawing probability, is the distribution which minimizes the expected time to get a fixed subset of distinct coupons. This optimization result is extended to the complementary distribution of that time when the full collection is considered, proving by the way this well-known conjecture. Finally, we propose a new conjecture which expresses the fact that the almost-uniform distribution should minimize the complementary distribution of the time needed to get any fixed number of distinct coupons.Comment: 14 page

    Omnibus Sequences, Coupon Collection, and Missing Word Counts

    Full text link
    An {\it Omnibus Sequence} of length nn is one that has each possible "message" of length kk embedded in it as a subsequence. We study various properties of Omnibus Sequences in this paper, making connections, whenever possible, to the classical coupon collector problem.Comment: 26 page

    Better Approximation Bounds for the Joint Replenishment Problem

    Full text link
    The Joint Replenishment Problem (JRP) deals with optimizing shipments of goods from a supplier to retailers through a shared warehouse. Each shipment involves transporting goods from the supplier to the warehouse, at a fixed cost C, followed by a redistribution of these goods from the warehouse to the retailers that ordered them, where transporting goods to a retailer ρ\rho has a fixed cost cρc_\rho. In addition, retailers incur waiting costs for each order. The objective is to minimize the overall cost of satisfying all orders, namely the sum of all shipping and waiting costs. JRP has been well studied in Operations Research and, more recently, in the area of approximation algorithms. For arbitrary waiting cost functions, the best known approximation ratio is 1.8. This ratio can be reduced to 1.574 for the JRP-D model, where there is no cost for waiting but orders have deadlines. As for hardness results, it is known that the problem is APX-hard and that the natural linear program for JRP has integrality gap at least 1.245. Both results hold even for JRP-D. In the online scenario, the best lower and upper bounds on the competitive ratio are 2.64 and 3, respectively. The lower bound of 2.64 applies even to the restricted version of JRP, denoted JRP-L, where the waiting cost function is linear. We provide several new approximation results for JRP. In the offline case, we give an algorithm with ratio 1.791, breaking the barrier of 1.8. In the online case, we show a lower bound of 2.754 on the competitive ratio for JRP-L (and thus JRP as well), improving the previous bound of 2.64. We also study the online version of JRP-D, for which we prove that the optimal competitive ratio is 2

    Transition between characters of classical groups, decomposition of Gelfand-Tsetlin patterns and last passage percolation

    Get PDF
    We study the combinatorial structure of the irreducible characters of the classical groups GLn(C){\rm GL}_{n}(\mathbb{C}), SO2n+1(C){\rm SO}_{2n+1}(\mathbb{C}), Sp2n(C){\rm Sp}_{2n}(\mathbb{C}), SO2n(C){\rm SO}_{2n}(\mathbb{C}) and the "non-classical" odd symplectic group Sp2n+1(C){\rm Sp}_{2n+1}(\mathbb{C}), finding new connections to the probabilistic model of Last Passage Percolation (LPP). Perturbing the expressions of these characters as generating functions of Gelfand-Tsetlin patterns, we produce two families of symmetric polynomials that interpolate between characters of Sp2n(C){\rm Sp}_{2n}(\mathbb{C}) and SO2n+1(C){\rm SO}_{2n+1}(\mathbb{C}) and between characters of SO2n(C){\rm SO}_{2n}(\mathbb{C}) and SO2n+1(C){\rm SO}_{2n+1}(\mathbb{C}). We identify the first family as a one-parameter specialization of Koornwinder polynomials, for which we thus provide a novel combinatorial structure; on the other hand, the second family appears to be new. We next develop a method of Gelfand-Tsetlin pattern decomposition to establish identities between all these polynomials that, in the case of characters, can be viewed as describing the decomposition of irreducible representations of the groups when restricted to certain subgroups. Through these formulas we connect orthogonal and symplectic characters, and more generally the interpolating polynomials, to LPP models with various symmetries, thus going beyond the link with classical Schur polynomials originally found by Baik and Rains [BR01a]. Taking the scaling limit of the LPP models, we finally provide an explanation of why the Tracy-Widom GOE and GSE distributions from random matrix theory admit formulations in terms of both Fredholm determinants and Fredholm Pfaffians.Comment: 60 pages, 11 figures. Typos corrected and a few remarks adde
    • 

    corecore