15,559 research outputs found

    Size-Ramsey numbers of structurally sparse graphs

    Full text link
    Size-Ramsey numbers are a central notion in combinatorics and have been widely studied since their introduction by Erd\H{o}s, Faudree, Rousseau and Schelp in 1978. Research has mainly focused on the size-Ramsey numbers of nn-vertex graphs with constant maximum degree Δ\Delta. For example, graphs which also have constant treewidth are known to have linear size-Ramsey numbers. On the other extreme, the canonical examples of graphs of unbounded treewidth are the grid graphs, for which the best known bound has only very recently been improved from O(n3/2)O(n^{3/2}) to O(n5/4)O(n^{5/4}) by Conlon, Nenadov and Truji\'c. In this paper, we prove a common generalization of these results by establishing new bounds on the size-Ramsey numbers in terms of treewidth (which may grow as a function of nn). As a special case, this yields a bound of O~(n3/2−1/2Δ)\tilde{O}(n^{3/2 - 1/2\Delta}) for proper minor-closed classes of graphs. In particular, this bound applies to planar graphs, addressing a question of Wood. Our proof combines methods from structural graph theory and classic Ramsey-theoretic embedding techniques, taking advantage of the product structure exhibited by graphs with bounded treewidth.Comment: 21 page

    Schaefer's theorem for graphs

    Full text link
    Schaefer's theorem is a complexity classification result for so-called Boolean constraint satisfaction problems: it states that every Boolean constraint satisfaction problem is either contained in one out of six classes and can be solved in polynomial time, or is NP-complete. We present an analog of this dichotomy result for the propositional logic of graphs instead of Boolean logic. In this generalization of Schaefer's result, the input consists of a set W of variables and a conjunction \Phi\ of statements ("constraints") about these variables in the language of graphs, where each statement is taken from a fixed finite set \Psi\ of allowed quantifier-free first-order formulas; the question is whether \Phi\ is satisfiable in a graph. We prove that either \Psi\ is contained in one out of 17 classes of graph formulas and the corresponding problem can be solved in polynomial time, or the problem is NP-complete. This is achieved by a universal-algebraic approach, which in turn allows us to use structural Ramsey theory. To apply the universal-algebraic approach, we formulate the computational problems under consideration as constraint satisfaction problems (CSPs) whose templates are first-order definable in the countably infinite random graph. Our method to classify the computational complexity of those CSPs is based on a Ramsey-theoretic analysis of functions acting on the random graph, and we develop general tools suitable for such an analysis which are of independent mathematical interest.Comment: 54 page

    Approximate Euclidean Ramsey theorems

    Full text link
    According to a classical result of Szemer\'{e}di, every dense subset of 1,2,...,N1,2,...,N contains an arbitrary long arithmetic progression, if NN is large enough. Its analogue in higher dimensions due to F\"urstenberg and Katznelson says that every dense subset of {1,2,...,N}d\{1,2,...,N\}^d contains an arbitrary large grid, if NN is large enough. Here we generalize these results for separated point sets on the line and respectively in the Euclidean space: (i) every dense separated set of points in some interval [0,L][0,L] on the line contains an arbitrary long approximate arithmetic progression, if LL is large enough. (ii) every dense separated set of points in the dd-dimensional cube [0,L]d[0,L]^d in \RR^d contains an arbitrary large approximate grid, if LL is large enough. A further generalization for any finite pattern in \RR^d is also established. The separation condition is shown to be necessary for such results to hold. In the end we show that every sufficiently large point set in \RR^d contains an arbitrarily large subset of almost collinear points. No separation condition is needed in this case.Comment: 11 pages, 1 figure
    • …
    corecore