2,302 research outputs found

    Duration problem: basic concept and some extensions

    Full text link
    We consider a sequence of independent random variables with the known distribution observed sequentially. The observation nn is assumed to be a value of one order statistics such as s:n-th, where 1 is less than s is less than n. It the instances following the nnth observation it may remain of the s:m or it will be the value of the order statistics r:m (of m> n observations). Changing the rank of the observation, along with expanding a set of observations there is a random phenomenon that is difficult to predict. From practical reasons it is of great interest. Among others, we pose the question of the moment in which the observation appears and whose rank will not change significantly until the end of sampling of a certain size. We also attempt to answer which observation should be kept to have the "good quality observation" as long as possible. This last question was analysed by Ferguson, Hardwick and Tamaki (1991) in the abstract form which they called the problem of duration. This article gives a systematical presentation of the known duration models and a new modifications. We collect results from different papers on the duration of the extremal observation in the no-information (denoted as rank based) case and the full-information case. In the case of non-extremal observation duration models the most appealing are various settings related to the two extremal order statistics. In the no-information case it will be the maximizing duration of owning the relatively best or the second best object. The idea was formulated and the problem was solved by Szajowski and Tamaki (2006). The full-information duration problem with special requirement was presented by Kurushima and Ano (2010)

    Anisotropic Inflation from Extra Dimensions

    Full text link
    Vacuum multidimensional cosmological models with internal spaces being compact nn-dimensional Lie group manifolds are considered. Products of 3-spheres and SU(3)SU(3) manifold (a novelty in cosmology) are studied. It turns out that the dynamical evolution of the internal space drives an accelerated expansion of the external world (power law inflation). This generic solution (attractor in a phase space) is determined by the Lie group space without any fine tuning or arbitrary inflaton potentials. Matter in the four dimensions appears in the form of a number of scalar fields representing anisotropic scale factors for the internal space. Along the attractor solution the volume of the internal space grows logarithmically in time. This simple and natural model should be completed by mechanisms terminating the inflationary evolution and transforming the geometric scalar fields into ordinary particles.Comment: LaTeX, 11 pages, 5 figures available via fax on request to [email protected], submitted to Phys. Lett.

    Dispersion of particles in an infinite-horizon Lorentz gas

    Full text link
    We consider a two-dimensional Lorentz gas with infinite horizon. This paradigmatic model consists of pointlike particles undergoing elastic collisions with fixed scatterers arranged on a periodic lattice. It was rigorously shown that when tt\to\infty, the distribution of particles is Gaussian. However, the convergence to this limit is ultraslow, hence it is practically unattainable. Here we obtain an analytical solution for the Lorentz gas' kinetics on physically relevant timescales, and find that the density in its far tails decays as a universal power law of exponent 3-3. We also show that the arrangement of scatterers is imprinted in the shape of the distribution.Comment: Article with supplemental material: 10 pages, 4 figure

    Black holes in the quantum universe

    Full text link
    A succinct summary is given of the problem of reconciling observation of black hole-like objects with quantum mechanics. If quantum black holes behave like subsystems, and also decay, their information must be transferred to their environments. Interactions that accomplish this with `minimal' departure from a standard description are parameterized. Possible sensitivity of gravitational wave or very long baseline interferometric observations to these interactions is briefly outlined.Comment: 11 pages + ref

    The local and global geometrical aspects of the twin paradox in static spacetimes: II. Reissner--Nordstr\"{o}m and ultrastatic metrics

    Get PDF
    This is a consecutive paper on the timelike geodesic structure of static spherically symmetric spacetimes. First we show that for a stable circular orbit (if it exists) in any of these spacetimes all the infinitesimally close to it timelike geodesics constructed with the aid of the general geodesic deviation vector have the same length between a pair of conjugate points. In Reissner--Nordstr\"{o}m black hole metric we explicitly find the Jacobi fields on the radial geodesics and show that they are locally (and globally) maximal curves between any pair of their points outside the outer horizon. If a radial and circular geodesics in R--N metric have common endpoints, the radial one is longer. If a static spherically symmetric spacetime is ultrastatic, its gravitational field exerts no force on a free particle which may stay at rest; the free particle in motion has a constant velocity (in this sense the motion is uniform) and its total energy always exceeds the rest energy, i.~e.~it has no gravitational energy. Previously the absence of the gravitational force has been known only for the global Barriola--Vilenkin monopole. In the spacetime of the monopole we explicitly find all timelike geodesics, the Jacobi fields on them and the condition under which a generic geodesic may have conjugate points

    The Pivotal Role of Causality in Local Quantum Physics

    Full text link
    In this article an attempt is made to present very recent conceptual and computational developments in QFT as new manifestations of old and well establihed physical principles. The vehicle for converting the quantum-algebraic aspects of local quantum physics into more classical geometric structures is the modular theory of Tomita. As the above named laureate to whom I have dedicated has shown together with his collaborator for the first time in sufficient generality, its use in physics goes through Einstein causality. This line of research recently gained momentum when it was realized that it is not only of structural and conceptual innovative power (see section 4), but also promises to be a new computational road into nonperturbative QFT (section 5) which, picturesquely speaking, enters the subject on the extreme opposite (noncommutative) side.Comment: This is a updated version which has been submitted to Journal of Physics A, tcilatex 62 pages. Adress: Institut fuer Theoretische Physik FU-Berlin, Arnimallee 14, 14195 Berlin presently CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazi

    New Concepts in Particle Physics from Solution of an Old Problem

    Full text link
    Recent ideas on modular localization in local quantum physics are used to clarify the relation between on- and off-shell quantities in particle physics; in particular the relation between on-shell crossing symmetry and off-shell Einstein causality. Among the collateral results of this new nonperturbative approach are profound relations between crossing symmetry of particle physics and Hawking-Unruh like thermal aspects (KMS property, entropy attached to horizons) of quantum matter behind causal horizons, aspects which hitherto were exclusively related with Killing horizons in curved spacetime rather than with localization aspects in Minkowski space particle physics. The scope of this modular framework is amazingly wide and ranges from providing a conceptual basis for the d=1+1 bootstrap-formfactor program for factorizable d=1+1 models to a decomposition theory of QFT's in terms of a finite collection of unitarily equivalent chiral conformal theories placed a specified relative position within a common Hilbert space (in d=1+1 a holographic relation and in higher dimensions more like a scanning). The new framework gives a spacetime interpretation to the Zamolodchikov-Faddeev algebra and explains its thermal aspects.Comment: In this form it will appear in JPA Math Gen, 47 pages tcilate
    corecore