10,636 research outputs found

    On a cyclic connectivity property of directed graphs

    Get PDF
    AbstractLet us call a digraph D cycle-connected if for every pair of vertices u,v∈V(D) there exists a cycle containing both u and v. In this paper we study the following open problem introduced by Ádåm. Let D be a cycle-connected digraph. Does there exist a universal edge in D, i.e., an edge e∈E(D) such that for every w∈V(D) there exists a cycle C such that w∈V(C) and e∈E(C)?In his 2001 paper Hetyei conjectured that cycle-connectivity always implies the existence of a universal edge. In the present paper we prove the conjecture of Hetyei for bitournaments

    Cuts in matchings of 3-connected cubic graphs

    Full text link
    We discuss conjectures on Hamiltonicity in cubic graphs (Tait, Barnette, Tutte), on the dichromatic number of planar oriented graphs (Neumann-Lara), and on even graphs in digraphs whose contraction is strongly connected (Hochst\"attler). We show that all of them fit into the same framework related to cuts in matchings. This allows us to find a counterexample to the conjecture of Hochst\"attler and show that the conjecture of Neumann-Lara holds for all planar graphs on at most 26 vertices. Finally, we state a new conjecture on bipartite cubic oriented graphs, that naturally arises in this setting.Comment: 12 pages, 5 figures, 1 table. Improved expositio

    Causal Set Dynamics: A Toy Model

    Get PDF
    We construct a quantum measure on the power set of non-cyclic oriented graphs of N points, drawing inspiration from 1-dimensional directed percolation. Quantum interference patterns lead to properties which do not appear to have any analogue in classical percolation. Most notably, instead of the single phase transition of classical percolation, the quantum model displays two distinct crossover points. Between these two points, spacetime questions such as "does the network percolate" have no definite or probabilistic answer.Comment: 28 pages incl. 5 figure

    Neural complexity: a graph theoretic interpretation

    No full text
    One of the central challenges facing modern neuroscience is to explain the ability of the nervous system to coherently integrate information across distinct functional modules in the absence of a central executive. To this end Tononi et al. [Proc. Nat. Acad. Sci. USA 91, 5033 (1994)] proposed a measure of neural complexity that purports to capture this property based on mutual information between complementary subsets of a system. Neural complexity, so defined, is one of a family of information theoretic metrics developed to measure the balance between the segregation and integration of a system's dynamics. One key question arising for such measures involves understanding how they are influenced by network topology. Sporns et al. [Cereb. Cortex 10, 127 (2000)] employed numerical models in order to determine the dependence of neural complexity on the topological features of a network. However, a complete picture has yet to be established. While De Lucia et al. [Phys. Rev. E 71, 016114 (2005)] made the first attempts at an analytical account of this relationship, their work utilized a formulation of neural complexity that, we argue, did not reflect the intuitions of the original work. In this paper we start by describing weighted connection matrices formed by applying a random continuous weight distribution to binary adjacency matrices. This allows us to derive an approximation for neural complexity in terms of the moments of the weight distribution and elementary graph motifs. In particular we explicitly establish a dependency of neural complexity on cyclic graph motifs
    • 

    corecore