3 research outputs found

    On a Class of Optimal Nonbinary Linear Unequal-Error-Protection Codes for Two Sets of Messages

    Get PDF
    Several authors have addressed the problem of designing good linear unequal error protection (LUEP) codes. However, very little is known about good nonbinary LUEP codes. We present a class of optimal nonbinary LUEP codes for two different sets of messages. By combining t-error-correcting ReedSolomon (RS) codes and shortened nonbinary Hamming codes, we obtain nonbinary LUEP codes that protect one set of messages against any t or fewer symbol errors and the remaining set of messages against any single symbol error. For t ≥ 2, we show that these codes are optimal in the sense of achieving the Hamming lower bound on the number of redundant symbols of a nonbinary LUEP code with the same parameters

    High-Rate Permutation Coding with Unequal Error Protection

    Get PDF
    Channel coding provides numerous advantages to digital communications. One of such advantages is error correcting capabilities. This, however, comes at the expense of coding rate, which is a function of the codebook’s cardinality |C| or number of coded information bits and the codeword length M. In order to achieve high coding rate, we hereby report a channel coding approach that is capable of error correction under power line communications (PLC) channel conditions, with permutation coding as the coding scheme of choice. The approach adopts the technique of unequal error correction for binary codes, but with the exception that non-binary permutation codes are employed here. As such, certain parts of the information bits are coded with permutation symbols, while transmitting other parts uncoded. Comparisons with other conventional permutation codes are presented, with the proposed scheme exhibiting a relatively competitive performance in terms of symbol error rate

    Synthesis for circuit reliability

    Get PDF
    textElectrical and Computer Engineerin
    corecore