2,602 research outputs found

    Year 2010 Issues on Cryptographic Algorithms

    Get PDF
    In the financial sector, cryptographic algorithms are used as fundamental techniques for assuring confidentiality and integrity of data used in financial transactions and for authenticating entities involved in the transactions. Currently, the most widely used algorithms appear to be two-key triple DES and RC4 for symmetric ciphers, RSA with a 1024-bit key for an asymmetric cipher and a digital signature, and SHA-1 for a hash function according to international standards and guidelines related to the financial transactions. However, according to academic papers and reports regarding the security evaluation for such algorithms, it is difficult to ensure enough security by using the algorithms for a long time period, such as 10 or 15 years, due to advances in cryptanalysis techniques, improvement of computing power, and so on. To enhance the transition to more secure ones, National Institute of Standards and Technology (NIST) of the United States describes in various guidelines that NIST will no longer approve two-key triple DES, RSA with a 1024-bit key, and SHA-1 as the algorithms suitable for IT systems of the U.S. Federal Government after 2010. It is an important issue how to advance the transition of the algorithms in the financial sector. This paper refers to issues regarding the transition as Year 2010 issues in cryptographic algorithms. To successfully complete the transition by 2010, the deadline set by NIST, it is necessary for financial institutions to begin discussing the issues at the earliest possible date. This paper summarizes security evaluation results of the current algorithms, and describes Year 2010 issues, their impact on the financial industry, and the transition plan announced by NIST. This paper also shows several points to be discussed when dealing with Year 2010 issues.Cryptographic algorithm; Symmetric cipher; Asymmetric cipher; Security; Year 2010 issues; Hash function

    Transparent code authentication at the processor level

    Get PDF
    The authors present a lightweight authentication mechanism that verifies the authenticity of code and thereby addresses the virus and malicious code problems at the hardware level eliminating the need for trusted extensions in the operating system. The technique proposed tightly integrates the authentication mechanism into the processor core. The authentication latency is hidden behind the memory access latency, thereby allowing seamless on-the-fly authentication of instructions. In addition, the proposed authentication method supports seamless encryption of code (and static data). Consequently, while providing the software users with assurance for authenticity of programs executing on their hardware, the proposed technique also protects the software manufacturers’ intellectual property through encryption. The performance analysis shows that, under mild assumptions, the presented technique introduces negligible overhead for even moderate cache sizes

    Stream cipher based on quasigroup string transformations in Zp∗Z_p^*

    Full text link
    In this paper we design a stream cipher that uses the algebraic structure of the multiplicative group \bbbz_p^* (where p is a big prime number used in ElGamal algorithm), by defining a quasigroup of order p−1p-1 and by doing quasigroup string transformations. The cryptographical strength of the proposed stream cipher is based on the fact that breaking it would be at least as hard as solving systems of multivariate polynomial equations modulo big prime number pp which is NP-hard problem and there are no known fast randomized or deterministic algorithms for solving it. Unlikely the speed of known ciphers that work in \bbbz_p^* for big prime numbers pp, the speed of this stream cipher both in encryption and decryption phase is comparable with the fastest symmetric-key stream ciphers.Comment: Small revisions and added reference

    MV3: A new word based stream cipher using rapid mixing and revolving buffers

    Full text link
    MV3 is a new word based stream cipher for encrypting long streams of data. A direct adaptation of a byte based cipher such as RC4 into a 32- or 64-bit word version will obviously need vast amounts of memory. This scaling issue necessitates a look for new components and principles, as well as mathematical analysis to justify their use. Our approach, like RC4's, is based on rapidly mixing random walks on directed graphs (that is, walks which reach a random state quickly, from any starting point). We begin with some well understood walks, and then introduce nonlinearity in their steps in order to improve security and show long term statistical correlations are negligible. To minimize the short term correlations, as well as to deter attacks using equations involving successive outputs, we provide a method for sequencing the outputs derived from the walk using three revolving buffers. The cipher is fast -- it runs at a speed of less than 5 cycles per byte on a Pentium IV processor. A word based cipher needs to output more bits per step, which exposes more correlations for attacks. Moreover we seek simplicity of construction and transparent analysis. To meet these requirements, we use a larger state and claim security corresponding to only a fraction of it. Our design is for an adequately secure word-based cipher; our very preliminary estimate puts the security close to exhaustive search for keys of size < 256 bits.Comment: 27 pages, shortened version will appear in "Topics in Cryptology - CT-RSA 2007

    Efficient non-malleable codes and key derivation for poly-size tampering circuits

    Get PDF
    Non-malleable codes, defined by Dziembowski, Pietrzak, and Wichs (ICS '10), provide roughly the following guarantee: if a codeword c encoding some message x is tampered to c' = f(c) such that c' ≠ c , then the tampered message x' contained in c' reveals no information about x. The non-malleable codes have applications to immunizing cryptosystems against tampering attacks and related-key attacks. One cannot have an efficient non-malleable code that protects against all efficient tampering functions f. However, in this paper we show 'the next best thing': for any polynomial bound s given a-priori, there is an efficient non-malleable code that protects against all tampering functions f computable by a circuit of size s. More generally, for any family of tampering functions F of size F ≤ 2s , there is an efficient non-malleable code that protects against all f in F . The rate of our codes, defined as the ratio of message to codeword size, approaches 1. Our results are information-theoretic and our main proof technique relies on a careful probabilistic method argument using limited independence. As a result, we get an efficiently samplable family of efficient codes, such that a random member of the family is non-malleable with overwhelming probability. Alternatively, we can view the result as providing an efficient non-malleable code in the 'common reference string' model. We also introduce a new notion of non-malleable key derivation, which uses randomness x to derive a secret key y = h(x) in such a way that, even if x is tampered to a different value x' = f(x) , the derived key y' = h(x') does not reveal any information about y. Our results for non-malleable key derivation are analogous to those for non-malleable codes. As a useful tool in our analysis, we rely on the notion of 'leakage-resilient storage' of Davì, Dziembowski, and Venturi (SCN '10), and, as a result of independent interest, we also significantly improve on the parameters of such schemes
    • …
    corecore