1,927 research outputs found

    On the stable discretization of strongly anisotropic phase field models with applications to crystal growth

    Get PDF
    We introduce unconditionally stable finite element approximations for anisotropic Allen--Cahn and Cahn--Hilliard equations. These equations frequently feature in phase field models that appear in materials science. On introducing the novel fully practical finite element approximations we prove their stability and demonstrate their applicability with some numerical results. We dedicate this article to the memory of our colleague and friend Christof Eck (1968--2011) in recognition of his fundamental contributions to phase field models.Comment: 20 pages, 8 figure

    Nonlinear dynamics in one dimension: On a criterion for coarsening and its temporal law

    Full text link
    We develop a general criterion about coarsening for a class of nonlinear evolution equations describing one dimensional pattern-forming systems. This criterion allows one to discriminate between the situation where a coarsening process takes place and the one where the wavelength is fixed in the course of time. An intermediate scenario may occur, namely `interrupted coarsening'. The power of the criterion lies in the fact that the statement about the occurrence of coarsening, or selection of a length scale, can be made by only inspecting the behavior of the branch of steady state periodic solutions. The criterion states that coarsening occurs if lambda'(A)>0 while a length scale selection prevails if lambda'(A)<0, where lambdalambda is the wavelength of the pattern and A is the amplitude of the profile. This criterion is established thanks to the analysis of the phase diffusion equation of the pattern. We connect the phase diffusion coefficient D(lambda) (which carries a kinetic information) to lambda'(A), which refers to a pure steady state property. The relationship between kinetics and the behavior of the branch of steady state solutions is established fully analytically for several classes of equations. Another important and new result which emerges here is that the exploitation of the phase diffusion coefficient enables us to determine in a rather straightforward manner the dynamical coarsening exponent. Our calculation, based on the idea that |D(lambda)|=lambda^2/t, is exemplified on several nonlinear equations, showing that the exact exponent is captured. Some speculations about the extension of the present results to higher dimension are outlined.Comment: 16 pages. Only a few minor changes. Accepted for publication in Physical Review

    Solving periodic semilinear stiff PDEs in 1D, 2D and 3D with exponential integrators

    Get PDF
    Dozens of exponential integration formulas have been proposed for the high-accuracy solution of stiff PDEs such as the Allen-Cahn, Korteweg-de Vries and Ginzburg-Landau equations. We report the results of extensive comparisons in MATLAB and Chebfun of such formulas in 1D, 2D and 3D, focusing on fourth and higher order methods, and periodic semilinear stiff PDEs with constant coefficients. Our conclusion is that it is hard to do much better than one of the simplest of these formulas, the ETDRK4 scheme of Cox and Matthews

    Degenerate Mobilities in Phase Field Models are Insufficient to Capture Surface Diffusion

    Full text link
    Phase field models frequently provide insight to phase transitions, and are robust numerical tools to solve free boundary problems corresponding to the motion of interfaces. A body of prior literature suggests that interface motion via surface diffusion is the long-time, sharp interface limit of microscopic phase field models such as the Cahn-Hilliard equation with a degenerate mobility function. Contrary to this conventional wisdom, we show that the long-time behaviour of degenerate Cahn-Hilliard equation with a polynomial free energy undergoes coarsening, reflecting the presence of bulk diffusion, rather than pure surface diffusion. This reveals an important limitation of phase field models that are frequently used to model surface diffusion

    Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential

    Get PDF
    We present and analyze finite difference numerical schemes for the Allen Cahn/Cahn-Hilliard equation with a logarithmic Flory Huggins energy potential. Both the first order and second order accurate temporal algorithms are considered. In the first order scheme, we treat the nonlinear logarithmic terms and the surface diffusion term implicitly, and update the linear expansive term and the mobility explicitly. We provide a theoretical justification that, this numerical algorithm has a unique solution such that the positivity is always preserved for the logarithmic arguments. In particular, our analysis reveals a subtle fact: the singular nature of the logarithmic term around the values of −1-1 and 1 prevents the numerical solution reaching these singular values, so that the numerical scheme is always well-defined as long as the numerical solution stays similarly bounded at the previous time step. Furthermore, an unconditional energy stability of the numerical scheme is derived, without any restriction for the time step size. The unique solvability and the positivity-preserving property for the second order scheme are proved using similar ideas, in which the singular nature of the logarithmic term plays an essential role. For both the first and second order accurate schemes, we are able to derive an optimal rate convergence analysis, which gives the full order error estimate. The case with a non-constant mobility is analyzed as well. We also describe a practical and efficient multigrid solver for the proposed numerical schemes, and present some numerical results, which demonstrate the robustness of the numerical schemes

    Sharp Interface Limits of the Cahn-Hilliard Equation with Degenerate Mobility

    Full text link
    In this work, the sharp interface limit of the degenerate Cahn-Hilliard equation (in two space dimensions) with a polynomial double well free energy and a quadratic mobility is derived via a matched asymptotic analysis involving exponentially large and small terms and multiple inner layers. In contrast to some results found in the literature, our analysis reveals that the interface motion is driven by a combination of surface diffusion flux proportional to the surface Laplacian of the interface curvature and an additional contribution from nonlinear, porous-medium type bulk diffusion, For higher degenerate mobilities, bulk diffusion is subdominant. The sharp interface models are corroborated by comparing relaxation rates of perturbations to a radially symmetric stationary state with those obtained by the phase field model.Comment: 27 pages, 2 figure

    Phase Separation Dynamics in Isotropic Ion-Intercalation Particles

    Full text link
    Lithium-ion batteries exhibit complex nonlinear dynamics, resulting from diffusion and phase transformations coupled to ion intercalation reactions. Using the recently developed Cahn-Hilliard reaction (CHR) theory, we investigate a simple mathematical model of ion intercalation in a spherical solid nanoparticle, which predicts transitions from solid-solution radial diffusion to two-phase shrinking-core dynamics. This general approach extends previous Li-ion battery models, which either neglect phase separation or postulate a spherical shrinking-core phase boundary, by predicting phase separation only under appropriate circumstances. The effect of the applied current is captured by generalized Butler-Volmer kinetics, formulated in terms of diffusional chemical potentials, and the model consistently links the evolving concentration profile to the battery voltage. We examine sources of charge/discharge asymmetry, such as asymmetric charge transfer and surface "wetting" by ions within the solid, which can lead to three distinct phase regions. In order to solve the fourth-order nonlinear CHR initial-boundary-value problem, a control-volume discretization is developed in spherical coordinates. The basic physics are illustrated by simulating many representative cases, including a simple model of the popular cathode material, lithium iron phosphate (neglecting crystal anisotropy and coherency strain). Analytical approximations are also derived for the voltage plateau as a function of the applied current
    • …
    corecore