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Abstract

We introduce unconditionally stable finite element approximations for anisotropic Allen–
Cahn and Cahn–Hilliard equations. These equations frequently feature in phase field mod-
els that appear in materials science. On introducing the novel fully practical finite element
approximations we prove their stability and demonstrate their applicability with some nu-
merical results.

We dedicate this article to the memory of our colleague and friend Christof Eck (1968–
2011) in recognition of his fundamental contributions to phase field models.
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1 Introduction

The isotropic Cahn–Hilliard equation

θ ∂u
∂t

= ∇ . ( b(u)∇w), w = −ε∆u+ ε−1 Ψ′(u) (1)

was originally introduced to model spinodal decomposition and coarsening phenomena in bi-
nary alloys, see [25, 27]. Here u is defined to be the difference of the local concentrations of
the two components of an alloy and hence u is restricted to lie in the interval [−1, 1]. More
recently, the Cahn–Hilliard equation has been used e.g. as a phase field approximation for sharp
interface evolutions and to study phase transitions and interface dynamics in multiphase fluids,
see e.g. [1, 16, 23, 46] and the references therein. We note that with θ = 1 and b(u) = 1 in
(1) in the limit ε → 0, we recover the well known sharp interface motion by Mullins–Sekerka,
whereas θ = ε and b(u) = 1− u2 leads to surface diffusion; see below for details.
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The theory of Cahn and Hilliard is based on the following Ginzburg–Landau free energy

E(u) :=

∫
Ω

ε
2
|∇u|2 + ε−1 Ψ(u) dx ,

where ε > 0 is a parameter and a measure for the interfacial thickness and Ω ⊂ Rd, d = 2, 3,
is a given domain. The first term in the free energy penalizes large gradients and the second
term is the homogeneous free energy. In this paper, we consider the so-called zero temperature
“deep quench” limit, where a possible choice is

Ψ(u) :=

{
1
2

(1− u2) |u| ≤ 1 ,

∞ |u| > 1 ,
with cΨ :=

∫ 1

−1

√
2 Ψ(s) ds = π

2
, (2)

see [7, 21]. Clearly the obstacle potential Ψ is not differentiable at ±1. Hence, whenever we
write Ψ′(u) in this paper we mean that the expression holds only for |u| < 1, and that in general
a variational inequality needs to be employed.

We note that (1) can be derived from mass balance considerations as a gradient flow for the
free energy E(u), with the chemical potential w := δE

δu
being the variational derivative of the

energy E with respect to u. We remark that evolutions of (1) lead to structures consisting of bulk
regions in which u takes the values ±1, and separating these regions there will be interfacial
transition layers across which u changes rapidly from one bulk value to the other. With the help
of formal asymptotics it can be shown that the width of these layers is approximately ε π; see
e.g. [22, 26, 38].

In this paper we want to consider an anisotropic variant of E(u), and hence of (1). To this
end, we introduce the anisotropic density function γ : Rd → R≥0 with γ ∈ C2(Rd \ {0}) ∩
C(Rd) which is assumed to be absolutely homogeneous of degree one, i.e.

γ(λ p) = |λ|γ(p) ∀ p ∈ Rd, ∀ λ ∈ R ⇒ γ′(p) . p = γ(p) ∀ p ∈ Rd \ {0}, (3)

where γ′ is the gradient of γ. Then the anisotropy function defined as

A(p) = 1
2
|γ(p)|2 ∀ p ∈ Rd , (4)

is absolutely homogeneous of degree two and gives rise to the following anisotropic Ginzburg–
Landau free energy

Eγ(u) :=

∫
Ω

ε
2
|γ(∇u)|2 + ε−1 Ψ(u) dx ≡

∫
Ω

εA(∇u) + ε−1 Ψ(u) dx ; (5)

see e.g. [31, 35, 37]. Note that Eγ reduces to E in the isotropic case, i.e. when γ satisfies

γ(p) = |p| ∀ p ∈ Rd . (6)

In this paper, we will only consider smooth and convex anisotropies, i.e. they satisfy

γ′(p) . q ≤ γ(q) ∀ p ∈ Rd \ {0} , q ∈ Rd , (7)
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which, on recalling (3), is equivalent to

γ(p) + γ′(p) . (q − p) ≤ γ(q) ∀ p ∈ Rd \ {0} , q ∈ Rd . (8)

Together with initial and natural boundary conditions, the anisotropic Ginzburg–Landau
energy (5) yields the following anisotropic Cahn–Hilliard equation:

θ
∂u

∂t
= ∇ . (b(u)∇w) in ΩT := Ω× (0, T ) , (9a)

1
2
cΨ α

−1w = −ε∇ . A′(∇u) + ε−1 Ψ′(u) in ΩT , (9b)
∂u

∂ν
= 0 , b(u)

∂w

∂ν
= 0 on ∂Ω× (0, T ) , (9c)

u(·, 0) = u0 in Ω , (9d)

where θ, α ∈ R>0 with α being a factor relating to surface tension in the sharp interface limit,
and where ν is the outer normal to ∂Ω. Moreover, u0 : Ω → R is some initial data satisfying
|u0| ≤ 1.

An alternative to the no-flux boundary conditions (9c) are the conditions

∂u

∂ν
= 0 , w = g on ∂Ω× (0, T ) , (10)

which are relevant in the modelling of crystal growth. Here in general g ∈ H
1
2 (∂Ω), but for

simplicity we assume that g ≡ w∂Ω ∈ R throughout this paper.

The anisotropic Allen–Cahn equation based on (5) is given by

ε
∂u

∂t
= ε∇ . A′(∇u)− ε−1 Ψ′(u) in ΩT , (11a)

∂u

∂ν
= 0 , on ∂Ω× (0, T ) , (11b)

u(·, 0) = u0 in Ω . (11c)

It was shown in [2, 37] that as ε → 0 the zero level sets of u converge to a sharp interface Γ
which moves by anisotropic mean curvature flow, i.e.

1

γ(n)
V = κγ , (12)

where V is the velocity of Γ in the direction of its normal n, and where κγ is the anisotropic
mean curvature of Γ with respect to the anisotropic surface energy∫

Γ

γ(n) ds . (13)

In particular, κγ is defined as the first variation of the above energy, which can be computed as

κγ := −∇s . γ
′(n) ,
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i.e. d
dt

∫
Γ(t)

γ(n) ds = −
∫

Γ(t)
κγ V ds; where ∇s . is the tangential divergence on Γ; see e.g.

[28, 29, 53].

Similarly, with the help of formal asymptotics, see e.g. [17, 24, 49, 54], it can be shown that
the sharp interface limit of (9a–d) with θ = 1 and b(u) = b0, with b0 ∈ R>0, is given by the
following Mullins–Sekerka problem

0 = ∆w in Ω± , (14a)

b0

[
∂w

∂n

]+

−
= −2V on Γ(t) , (14b)

w = ακγ on Γ(t) , (14c)
∂w

∂ν
= 0 on ∂Ω , (14d)

where Ω± denote the domains occupied by the two phases, Γ = (∂Ω+) ∩ Ω is the interface
and [·]+− denotes the jump across Γ and with n pointing into the set Ω+. Of course, if the
natural boundary conditions (9c) are changed to (10), then the limiting motion becomes (14a–
c) together with

w = w∂Ω on ∂Ω . (15)

The problem (14a–c), (15) models the supercooling of a molten pure substance, with w playing
the role of a (rescaled) temperature. Then (14b) is the so-called Stefan condition, (14c) is the
anisotropic Gibbs–Thomson law without kinetic undercooling and (15) prescribes the super-
cooling at the boundary. Here we note that in the quasi-static regime the heat diffusion was
reduced to Laplace’s equation in Ω± in (14a).

On replacing heat diffusion with particle diffusion, the model (14a–c), (15), with w now
representing a (rescaled) particle concentration, is relevant in isothermal crystal growth where
a density change occurs at the interfacer, see e.g. [11, 13, 14] and the references therein. We
remark that in order to recover the anisotropic Gibbs–Thomson law with kinetic undercooling
in place of (14c) a viscous Cahn–Hilliard equation needs to be considered, see e.g. [3]. We will
look at this in more detail in the forthcoming article [15].

For later use we remark that a solution to (14a–c), (15) satisfies the energy identity

d

dt

(
2α

∫
Γ

γ(n) ds− 2w∂Ω vol(Ω+)

)
+ b0

∫
Ω

|∇w|2 dx = 0 , (16)

see e.g. [11], which is the sharp interface analogue of the corresponding formal phase field
energy bound

d

dt

(
2α

1

cΨ

Eγ(u)− w∂Ω

∫
Ω

u dx

)
+ b0

∫
Ω

|∇w|2 dx ≤ 0 (17)

for the anisotropic Cahn–Hilliard equation (9a,b), (10) with θ = 1 and b(u) = b0.

Lastly, the formal asymptotic limit of (9a–d) with θ = ε and b(u) = 1 − u2 is given by
anisotropic surface diffusion, i.e.

V = −1
2
cΨ α∆s κγ , (18)
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where ∆s is the Laplace–Beltrami operator on Γ. The limit (18) in the isotropic case (6) was
formally derived in [26], and together with the techniques in e.g. [37, 38, 54] the anisotropic
limit (18) is easily established. More details on the interpretation of anisotropic sharp interface
motions as gradient flows for (13) and on their phase field equivalents can be found in [52].

It is the aim of this paper to introduce unconditionally stable finite element approximations
for the phase field models (9a–d) and (11a–c). Based on earlier work by the authors in the
context of the parametric approximation of anisotropic geometric evolution equations [8, 9],
the crucial idea here is to restrict the class of anisotropies under consideration. The special
structure of the chosen anisotropies can then be exploited to develop discretizations that are
stable without the need for a regularization parameter and without a restriction on the time step
size. In particular, the class of anisotropies that we will consider in this paper is given by

γ(p) =
L∑
`=1

γ`(p), γ`(p) := [p .G` p]
1
2 , ∀ p ∈ Rd , (19)

where G` ∈ Rd×d, for ` = 1 → L, are symmetric and positive definite matrices. We note that
(19) corresponds to the special choice r = 1 for the class of anisotropies

γ(p) =

(
L∑
`=1

[γ`(p)]
r

) 1
r

∀ p ∈ Rd , r ∈ [1,∞) , (20)

which has been considered by the authors in [9,11]. We remark that anisotropies of the form (20)
are always strictly convex norms. In particular, they satisfy (8); see Lemma 2.1 below. However,
despite this seemingly restrictive choice, it is possible with (20) to model and approximate a
wide variety of anisotropies that are relevant in materials science. For the sake of brevity, we
refer to the exemplary Wulff shapes in the authors’ previous papers [8–13]. As we restrict
ourselves to the class of anisotropies (19) in this paper, all of the numerical schemes introduced
in Section 3, below, will feature only linear equations and linear variational inequalities. The
numerical approximation of anisotropic phase field models for the class of anisotropies (20) is
more involved, and we will consider this in the forthcoming article [15].

Let us shortly review previous work on the numerical analysis of discretizations of anisotropic
Allen–Cahn and Cahn–Hilliard phase field models. Fully explicit and nonlinear semi-implicit
approximations of the Allen–Cahn equation (11a–c) are discussed in [31, §8]. In [41] several
time discretizations for (11a–c) are considered, and unconditional stability is shown for highly
nonlinear, implicit discretizations. Semi-implicit linearized discretizations are conditionally
stable on choosing a regularization parameter sufficiently large. Moreover, numerical results
for anisotropic Allen–Cahn equations have been obtained in e.g. [18,19,39,50]. With particular
reference to dendritic and crystal growth we mention e.g. [30, 36, 44, 45, 47], where a forced
anisotropic Allen–Cahn equation is coupled to a heat equation for the temperature. We also
mention the contributions of Christof Eck [32–34], who introduced homogenization methods
into the field of crystal growth.

As far as we are aware, the presented paper includes the first numerical analysis for an
approximation of the anisotropic Cahn–Hilliard equation (9a,b). Finally, we mention that nu-
merical computations for a generalized, sixth order Cahn–Hilliard equation, which is based on
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a higher order regularization of the energy (5) in the case of a non-convex anisotropy density
function γ, can be found in e.g. [48, 55].

The remainder of the paper is organized as follows. In Section 2 we consider a stable
linearization of the gradient A′ for the anisotropy function (4) and (19). This will lay the foun-
dations for the stable finite element approximations introduced in Section 3. Finally we present
some numerical results in Section 4.

2 Stable Linearization of A′

The analysis in this paper is based on the special form (19) of γ. Note that for γ satisfying (19)
it holds that

A′(p) = γ(p) γ′(p) , where γ′(p) =
L∑
`=1

[γ`(p)]
−1G` p ∀ p ∈ Rd \ {0} . (21)

For later use we recall the elementary identity

2 r (r − s) = r2 − s2 + (r − s)2 . (22)

LEMMA. 2.1. Let γ be of the form (19). Then γ is convex and the anisotropic operator A
satisfies

A′(p) . (p− q) ≥ γ(p) [γ(p)− γ(q)] ∀ p ∈ Rd \ {0} , q ∈ Rd , (23)

A(p) ≤ 1
2
γ(q)

L∑
`=1

[γ`(q)]
−1 [γ`(p)]

2 ∀ p ∈ Rd , q ∈ Rd \ {0}. (24)

Proof. We first prove (7). It follows from (21) and a Cauchy–Schwarz inequality that

γ′(p) . q =
L∑
`=1

[γ`(p)]
−1 (G` p) . q ≤

L∑
`=1

γ`(q) = γ(q) ∀ p ∈ Rd \ {0} , q ∈ Rd .

Together with (3) this implies (8), i.e. γ is convex. Multiplying (8) with γ(p) yields the desired
result (23). Moreover, we have from a Cauchy–Schwarz inequality that

γ(p) =
L∑
`=1

[γ`(q)]
1
2
γ`(p)

[γ`(q)]
1
2

≤ [γ(q)]
1
2

(
L∑
`=1

[γ`(p)]
2

γ`(q)

) 1
2

∀ p ∈ Rd , q ∈ Rd \ {0} .

This immediately yields the desired result (24), on recalling (4).

Our aim now is to replace the highly nonlinear operator A′(p) : Rd → Rd in (21) with a
linearized approximation that still maintains the crucial monotonicity property (23). It turns out
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that the natural linearization is already given in (21). In particular, we let

B(q) :=


γ(q)

L∑
`=1

[γ`(q)]
−1G` q 6= 0 ,

L

L∑
`=1

G` q = 0 .

(25)

Clearly it holds that
B(p) p = A′(p) ∀ p ∈ Rd \ {0} ,

and it turns out that approximating A′(p) withB(q) pmaintains the monotonicity property (23).

LEMMA. 2.2. Let γ be of the form (19). Then it holds that

[B(q) p] . (p− q) ≥ γ(p) [γ(p)− γ(q)] ∀ p , q ∈ Rd . (26)

Proof. Let p ∈ Rd. If q 6= 0 it holds, on recalling (24), that

[B(q) p] . (p− q) = γ(q)
L∑
`=1

[γ`(q)]
−1 (p− q) . G` p ≥ γ(q)

L∑
`=1

γ`(p) ([γ`(q)]
−1 γ`(p)− 1)

= γ(q)
L∑
`=1

[γ`(q)]
−1 [γ`(p)]

2 − γ(q) γ(p) ≥ γ(p) [γ(p)− γ(q)] .

If q = 0, on the other hand, then it follows from a Cauchy–Schwarz inequality that

[B(q) p] . (p− q) = [B(q) p] . p = L
L∑
`=1

p .G` p = L
L∑
`=1

[γ`(p)]
2 ≥

(
L∑
`=1

γ`(p)

)2

= [γ(p)]2 .

COROLLARY. 2.3. Let γ be of the form (19). Then it holds that

[B(q) p] . (p− q) ≥ A(p)− A(q) ∀ p , q ∈ Rd . (27)

Proof. The desired result follows immediately from Lemma 2.2 on noting the elementary
identity (22).

3 Finite Element Approximations

Let {T h}h>0 be a family of partitionings of Ω into disjoint open simplices σ with hσ :=
diam(σ) and h := maxσ∈T h hσ, so that Ω = ∪σ∈T hσ. Associated with T h is the finite ele-
ment space

Sh := {χ ∈ C(Ω) : χ |σ is linear ∀ σ ∈ T h} ⊂ H1(Ω).

7



We introduce also

Kh := {χ ∈ Sh : |χ| ≤ 1 in Ω} ⊂ K := {η ∈ H1(Ω) : |η| ≤ 1 a.e. in Ω} .

Let J be the set of nodes of T h and {pj}j∈J the coordinates of these nodes. Let {χj}j∈J be the
standard basis functions for Sh; that is χj ∈ Sh and χj(pi) = δij for all i, j ∈ J . We introduce
πh : C(Ω) → Sh, the interpolation operator, such that (πhη)(pj) = η(pj) for all j ∈ J . A
discrete semi-inner product on C(Ω) is then defined by

(η1, η2)h :=

∫
Ω

πh(η1(x) η2(x)) dx

with the induced discrete semi-norm given by |η|h := [ (η, η)h ]
1
2 , for η ∈ C(Ω). Similarly, we

denote the L2–inner product over Ω by (·, ·) with the corresponding norm given by | · |0.

In addition to T h, let 0 = t0 < t1 < . . . < tN−1 < tN = T be a partitioning of [0, T ] into
possibly variable time steps τn := tn − tn−1, n = 1→ N . We set τ := maxn=1→N τn.

We then consider the following fully practical, semi-implicit finite element approximation
for (9a–d). For n ≥ 1 find (Un,W n) ∈ Kh × Sh such that

θ

(
Un − Un−1

τn
, χ

)h
+ (πh[b(Un−1)]∇W n,∇χ) = 0 ∀ χ ∈ Sh, (28a)

ε (B(∇Un−1)∇Un,∇ [χ− Un]) ≥ (1
2
cΨ α

−1W n + ε−1 Un−1, χ− Un)h ∀ χ ∈ Kh ,
(28b)

where U0 ∈ Kh is an approximation of u0 ∈ K, e.g. U0 = πhu0 for u0 ∈ C(Ω).

Let
Ehγ (U) = 1

2
ε |γ(∇U)|20 + ε−1 (Ψ(U), 1)h ∀ U ∈ Sh (29)

be the natural discrete analogue of (5) and set bmin := mins∈[−1,1] b(s).

THEOREM. 3.1. There exists a solution (Un,W n) ∈ Kh × Sh to (28a,b) with (Un, 1) =
(Un−1, 1) = (U0, 1), and Un is unique. Moreover, it holds that

Ehγ (Un) + τn (2 θ α)−1 cΨ (πh[b(Un−1)]∇W n,∇W n) ≤ Ehγ (Un−1) . (30)

In addition, if bmin > 0 and if |(U0, 1)| <
∫

Ω
1 dx then W n is also unique.

Proof. The existence and uniqueness results follow straightforwardly with the techniques
in [7], see also [21], on noting from (25) that B(q) ∈ Rd×d is symmetric and positive definite
for all q ∈ Rd. Choosing χ = W n in (28a) and χ = Un−1 in (28b) yields that

θ (Un − Un−1,W n)h + τn (πh[b(Un−1)]∇W n,∇W n) = 0 , (31a)

ε (B(∇Un−1)∇Un,∇ [Un−1 − Un]) ≥ (1
2
cΨ α

−1W n + ε−1 Un−1, Un−1 − Un)h . (31b)

It follows from (31a,b), on recalling (22) and (27), that
1
2
ε |γ(∇Un)|20 − 1

2
ε−1 |Un|2h + τn (2 θ α)−1 cΨ (πh[b(Un−1)]∇W n,∇W n)

≤ 1
2
ε |γ(∇Un−1)|20 − 1

2
ε−1 |Un−1|2h .

This yields the desired result (30) on adding the constant 1
2
ε−1

∫
Ω

1 dx on both sides.
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REMARK. 3.2. On replacing (28a) with

ε

(
Un − Un−1

τn
, χ

)h
+ 1

2
cΨ α

−1 (W n, χ)h = 0 ∀ χ ∈ Sh (32)

we obtain a finite element approximation for (11a–c). Similarly to Theorem 3.1 existence of a
unique solution (Un,W n) ∈ Kh × Sh to (32), (28b), which is unconditionally stable, can then
be shown. In particular, the solution (Un,W n) to (32), (28b) satisfies the bound (30) with the
second term on the left hand side of (30) replaced by τn ε−1 (1

2
cΨ α

−1)2 |W n|2h.

REMARK. 3.3. On replacing the term ε−1 Un−1 on the right hand side of (28b) with ε−1 Un, we
obtain an implicit scheme for which the existence of a unique solution Un can only be shown
if the time step τn satisfies a very severe constraint of the form τn < C ε3 θ α−1, where the
constant C > 0 depends only on the anisotropy γ and on the mobility b. In the isotropic case
(6) with constant mobility coefficient b(u) = b0 ∈ R>0 this constraint can be made precise and
is given by

τn < 2 cΨ ε
3 θ (α b0)−1; (33)

see e.g. [21].

In the remainder of this section we consider the numerical approximation of (14a–c), (15).
In particular, we introduce a finite element approximation for (9a–c), (10). To this end, let

Sh0 := {χ ∈ Sh : χ = 0 on ∂Ω} and ShD := {χ ∈ Sh : χ = w∂Ω on ∂Ω} . (34)

We then consider the following fully practical, semi-implicit finite element approximation for
(9a–c), (10) with θ = 1 and b(u) = b0 > 0. For n ≥ 1 find (Un,W n) ∈ Kh × ShD such that(

Un − Un−1

τn
, χ

)h
+ b0 (∇W n,∇χ) = 0 ∀ χ ∈ Sh0 , (35a)

ε (B(∇Un−1)∇Un,∇ [χ− Un]) ≥ (1
2
cΨ α

−1W n + ε−1 Un−1, χ− Un)h ∀ χ ∈ Kh .
(35b)

Let
Fhγ (U) = 2α

1

cΨ

Ehγ (U)− w∂Ω (U, 1) ∀ U ∈ Sh . (36)

Then it holds that the solution to (35a,b) satisfies a discrete analogue to (17).

THEOREM. 3.4. There exists a unique solution (Un,W n) ∈ Kh × ShD to (35a,b). Moreover, it
holds that

Fhγ (Un) + τn b0 |∇W n|20 ≤ Fhγ (Un−1) . (37)

Proof. The existence and uniqueness proof is similar to the proof of Theorem 3.1, but we
detail it here for the readers’ convenience. Let Gh : Sh → Sh0 denote the discrete solution
operator for the homogeneous Dirichlet problem on Ω, i.e.

(∇ [Gh vh],∇χ) = (vh, χ)h ∀ χ ∈ Sh0 , ∀ vh ∈ Sh . (38)
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Hence for Un ∈ Kh we have that (35a) is equivalent to

W n = w∂Ω − b−1
0 Gh[U

n−Un−1

τn
] . (39)

It follows from (35b) and (39) that Un ∈ Kh is such that

ε (B(∇Un−1)∇Un,∇ (χ− Un)) + (α̂ b0)−1 (Gh[Un−Un−1

τn
], χ− Un)h

≥ (α̂−1w∂Ω + ε−1 Un−1, χ− Un)h ∀ χ ∈ Kh ,
(40)

where α̂ := 2
cΨ
α > 0. There exists a unique Un ∈ Kh solving (40) since this is the Euler–

Lagrange variational inequality of the strictly convex minimization problem

min
zh∈Kh

{
ε
2

(B(∇Un−1)∇ zh,∇ zh) + (2 τn α̂ b0)−1 |∇Gh(zh − Un−1)|20 − (α̂−1w∂Ω + ε−1 Un−1, zh)h
}
.

Therefore, on recalling (39), we have existence of a unique solution (Un,W n) ∈ Kh × ShD to
(35a,b). Choosing χ = W n − w∂Ω in (35a) and χ = Un−1 in (35b) yields that

(Un − Un−1,W n − w∂Ω)h + τn b0 (∇W n,∇W n) = 0 ,

ε (B(∇Un−1)∇Un,∇ [Un−1 − Un]) ≥ (α̂−1W n + ε−1 Un−1, Un−1 − Un)h .

Hence the desired result (37) follows from (22) and (27).

REMARK. 3.5. It is easy to show that for Un−1 = 1 and

−α−1w∂Ω ≤
2

cΨ

ε−1 (41)

the unique solution to (35a,b) is given by Un = 1 and W n = w∂Ω. However, if the phase field
parameter ε does not satisfy (41), then Un = 1 and W n = w∂Ω is no longer the solution to
(35a,b). In fact, in practice it is observed that for ε sufficiently large the solution Un exhibits a
boundary layer close to ∂Ω where Un < 1. This artificial boundary layer, which formally can
be shown to be also admitted by the continuous problem (9a,b,d), (10), is an undesired effect of
the phase field approximation for the sharp interface problem (14a–c), (15).

4 Numerical Experiments

In this section we report on numerical experiments for the proposed finite element approxima-
tions. For the implementation of the approximations we have used the adaptive finite element
toolbox ALBERTA, see [51]. We employ the adaptive mesh strategy introduced in [16] and [4],
respectively, for d = 2 and d = 3. This results in a fine mesh of uniform mesh size hf in-
side the interfacial region |Un−1| < 1 and a coarse mesh of uniform mesh size hc further away
from it. Here hf = 2H

Nf
and hc = 2H

Nc
are given by two integer numbers Nf > Nc, where we

assume from now on that Ω = (−H,H)d. As a solution method for the resulting system of
algebraic equations we use the Uzawa-multigrid iteration from [4], which is based on the ideas

10



in [40]. We remark that recently various alternative solution methods have been proposed, see
e.g. [5, 20, 42, 43].

For all the computations we take H = 1
2
, unless otherwise stated. Throughout this section

the initial data u0 ∈ C(Ω) is chosen with a well developed interface of width ε π, in which u0

varies smoothly. Details of such initial data can be found in e.g. [4, 6, 16]. Unless otherwise
stated we always set ε−1 = 16π and Nf = 128, Nc = 16. In addition, we employ uniform time
steps τn = τ , n = 1→ N .

For numerical approximations of (12) we employ the scheme (32), (28b). In computations
for (18) we use the scheme (28a,b) and fix b(u) = 1− u2, θ = ε and α = 2

cΨ
. In all other cases,

i.e. for the sharp interface limits (14a–c) with (14d) or (15), we fix b(u) = b0 = 2, θ = 1 and
α = 1 unless otherwise stated.

For the anisotropies in our numerical results we always choose among

ANI
(δ)
1 : γ1(p) =

d∑
j=1

[
δ2 |p|2 + p2

j (1− δ2)
] 1

2 , with δ > 0 ,

ANI2: γ as on the bottom of Figure 3 in [9], ANI3: γ as on the right of Figure 2 in [11],
ANI4: γ as in Figure 3 in [14].

We remark that ANI
(δ)
1 is a regularized l1–norm, so that its Wulff shape for δ small is given by a

smoothed square (in 2d) or a smoothed cube (in 3d) with nearly flat sides/facets. Anisotropies
with such flat sides or facets are called crystalline. Also the choices ANIi, i = 2→ 4, represent
nearly crystalline anisotropies. Here the Wulff shapes are given by a smoothed cylinder, a
smoothed hexagon and a smoothed hexagonal prism, respectively. Finally, we denote by ANI?1
the anisotropy ANI

(0.01)
1 rotated by π

4
in the x1 − x2-plane.

4.1 Numerical results in 2d

A numerical experiment for (12) with the help of the approximation (32), (28b) for the Allen–
Cahn equation (11a–c) can be seen in Figure 1. Here the initial profile is given by a circle with
radius 0.3. We set τ = 10−4 and T = 0.05. As expected, the round interface first becomes
facetted, before is shrinks to a point and disappears.

A numerical experiment for (18) with the help of the approximation (28a,b), for the Cahn–
Hilliard equation (9a–d) can be seen in Figure 2. Here the initial profile is given by two circles
with radii 0.2 and 0.15. We set τ = 10−6 and T = 10−4. We observe that the two connected
components of the inner phase each take on the form of the hexagonal Wulff shape.

A repeat of the experiment but now for b(u) = b0 = 2, so that the sharp interface limit is
given by the Mullins–Sekerka problem (14a–d), is shown in Figure 3. Here we set τ = 10−5

and T = 5× 10−3. Now, in contrast to the evolution in Figure 2, the smaller region shrinks so
that eventually there is only one connected component of the inner phase. Of course, the final
interface is converging to the hexagonal Wulff shape.

11



Figure 1: (ANI
(0.01)
1 ) A phase field approximation for the anisotropic mean curvature flow (12).

Snapshots of the solution at times t = 0, 5 × 10−3, 10−2, 2 × 10−2, 4 × 10−2. A plot of Ehγ
below.

Figure 2: (ANI3) A phase field approximation for anisotropic surface diffusion (18). Snapshots
of the solution at times t = 0, 2× 10−6, 5× 10−6, 10−5, 10−4. A plot of Ehγ below.
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Figure 3: (ANI3) A phase field approximation for the anisotropic Mullins–Sekerka problem
(14a–d). Snapshots of the solution at times t = 0, 10−4, 10−3, 4.6× 10−3, 5× 10−3. A plot of
Ehγ below.

The remaining computations in this subsection are for the scheme (35a,b). In order to visual-
ize the possible onset of a boundary layer as explained in Remark 3.5, we present a computation
for (35a,b) with the initial data U0 = u0 = 1. As we set α = 1, the critical value for w∂Ω in
(41) is − 2

cΨ
ε−1 = − 4

π
16π = −64. In our numerical computations this lower bound appears

to be sharp. In particular, we observe that Un = 1 is a steady state whenever w∂Ω ≥ −64,
but a boundary layer forms already for e.g. w∂Ω = −64 − 10−8. As an example, we present
a run for w∂Ω = −65 in Figure 4, where we can clearly see how the boundary layer develops.
Once the boundary layer has formed, the inner phase first shrinks and then disappears, leading
to the steady state solution U0 = −1 and W n = w∂Ω. Note that this phenomenon is completely
independent from the choice of anisotropy γ. The discretization parameters for this experiment
were Nf = Nc = 128 and τ = 10−5 with T = 10−3.

Next we simulate the growth of a small crystal, when the sharp interface evolution is given
by (14a–c), (15). In particular, we fix H = 8, w∂Ω = −2 and α = 0.03; and we observe that for
this choice of parameters the condition (41) is satisfied if we choose ε−1 = 32 π > 50

3
π. A run

for (35a,b), when the initial seed has radius 0.1, with the discretization parameters Nf = 4096,
Nc = 128, τ = 10−4 and T = 7.5 is shown in Figure 5. We observe that at first the crystal
seed grows, taking on the form of the Wulff shape of γ. Then the four sides break and become
nonconvex, with the four side arms that grow at the corners yielding a shape that is well-known
in the numerical simulation of dendritic growth.

4.2 Numerical results in 3d

A numerical experiment for (12) in 3d with the help of the approximation (32), (28b) for the
Allen–Cahn equation (11a–c) can be seen in Figure 6. Here the initial profile is given by a

13



Figure 4: (ANI
(0.01)
1 , w∂Ω = −65) Creation of a boundary layer. Snapshots of the solution at

times t = 0, 4× 10−5, 5× 10−5, 7× 10−5, 10−3. A plot of Fhγ below.

Figure 5: (ANI
(0.3)
1 , w∂Ω = −2, ε−1 = 32 π, Ω = (−8, 8)2) A phase field approximation

for the anisotropic Mullins–Sekerka problem (14a–c), (15). Snapshots of the solution at times
t = 0, 1, 5, 7, 7.5. A plot of Fhγ below.
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Figure 6: (ANI2) A phase field approximation for the anisotropic mean curvature flow (12).
Snapshots of the solution at times t = 0, 5 × 10−3, 10−2, 1.5 × 10−2, 2 × 10−2. A plot of Ehγ
below.

sphere with radius 0.3. We set τ = 10−4 and T = 0.03. It can be seen that the initially round
sphere assumes the cylindrical Wulff shape as it shrinks, before the interface shrinks to a point
and disappears completely.

A numerical experiment for (18) with the help of the approximation (28a,b) for the Cahn–
Hilliard equation (9a–d) can be seen in Figure 7. Here the initial profile is given by a sphere
with radius 0.3. We set τ = 10−6 and T = 10−3. We can clearly see the evolution from the
round sphere to the strongly facetted Wulff shape.

A numerical approximation for the sharp interface problem (14a–d), is shown in Figure 8.
Here the initial interface is given by the boundary of a 8× 1× 1 cuboid with minor side length
0.1, and we set τ = 10−5 and T = 5 × 10−3. We can observe that during the evolution the
elongated facets become bent and nonconvex, before the solution converges to the Wulff shape.
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anisotropic mean curvature as sharp interface limit of an inhomogeneous and anisotropic
Allen-Cahn equation, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), pp. 673–706.

15



Figure 7: (ANI4) A phase field approximation for anisotropic surface diffusion (18). Snapshots
of the solution at times t = 0, 10−5, 2× 10−5, 5× 10−5, 10−3. A plot of Ehγ below.

Figure 8: (ANI?1) A phase field approximation for the anisotropic Mullins–Sekerka problem
(14a–d). Snapshots of the solution at times t = 0, 10−4, 5× 10−4, 10−3, 5× 10−3. The middle
row shows detailed 2d plots of the solution in the x1–x2 plane. A plot of Ehγ below.

16



[3] F. BAI, C. M. ELLIOTT, A. GARDINER, A. SPENCE, AND A. M. STUART, The viscous
Cahn–Hilliard equation. I. Computations, Nonlinearity, 8 (1995), pp. 131–160.
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[6] L’. BAŇAS AND R. NÜRNBERG, Phase field computations for surface diffusion and void
electromigration in R3, Comput. Vis. Sci., 12 (2009), pp. 319–327.

[7] J. W. BARRETT, J. F. BLOWEY, AND H. GARCKE, Finite element approximation of
the Cahn–Hilliard equation with degenerate mobility, SIAM J. Numer. Anal., 37 (1999),
pp. 286–318.

[8] J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG, Numerical approximation of
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[37] C. M. ELLIOTT AND R. SCHÄTZLE, The limit of the anisotropic double-obstacle Allen-
Cahn equation, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), pp. 1217–1234.

[38] H. GARCKE, B. NESTLER, AND B. STOTH, On anisotropic order parameter models for
multi-phase systems and their sharp interface limits, Phys. D, 115 (1998), pp. 87–108.

[39] H. GARCKE, B. STOTH, AND B. NESTLER, Anisotropy in multi-phase systems: a phase
field approach, Interfaces Free Bound., 1 (1999), pp. 175–198.
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[48] B. LI, J. LOWENGRUB, A. RÄTZ, AND A. VOIGT, Geometric evolution laws for thin
crystalline films: modeling and numerics, Commun. Comput. Phys., 6 (2009), pp. 433–
482.

[49] G. B. MCFADDEN, A. A. WHEELER, R. J. BRAUN, S. R. CORIELL, AND R. F.
SEKERKA, Phase-field models for anisotropic interfaces, Phys. Rev. E (3), 48 (1993),
pp. 2016–2024.

[50] M. PAOLINI, Fattening in two dimensions obtained with a nonsymmetric anisotropy: nu-
merical simulations, in Proceedings of the Algoritmy’97 Conference on Scientific Com-
puting (Zuberec), vol. 67, 1998, pp. 43–55.

[51] A. SCHMIDT AND K. G. SIEBERT, Design of Adaptive Finite Element Software: The
Finite Element Toolbox ALBERTA, vol. 42 of Lecture Notes in Computational Science
and Engineering, Springer-Verlag, Berlin, 2005.

[52] J. E. TAYLOR AND J. W. CAHN, Linking anisotropic sharp and diffuse surface motion
laws via gradient flows, J. Statist. Phys., 77 (1994), pp. 183–197.

[53] J. E. TAYLOR, J. W. CAHN, AND C. A. HANDWERKER, Geometric models of crystal
growth, Acta Metall. Mater., 40 (1992), pp. 1443–1474.

[54] A. A. WHEELER AND G. B. MCFADDEN, A ξ-vector formulation of anisotropic phase-
field models: 3D asymptotics, European J. Appl. Math., 7 (1996), pp. 367–381.

[55] S. WISE, J. KIM, AND J. LOWENGRUB, Solving the regularized, strongly anisotropic
Cahn–Hilliard equation by an adaptive nonlinear multigrid method, J. Comput. Phys.,
226 (2007), pp. 414–446.

20


